Duc Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University, Hanoi, E3
Trang 1Geomagnetic sensors based on Metglas/PZT laminates
D.T Huong Giang∗, P.A Duc, N.T Ngoc, N.H Duc
Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University, Hanoi, E3 Building, 144 Xuan Thuy Road, Cau Giay, Hanoi, Viet Nam
Article history:
Received 21 November 2011
Received in revised form 19 March 2012
Accepted 19 March 2012
Available online 28 March 2012
Keywords:
Magnetic sensors
Geomagnetic sensors
Magnetoelectric effects
Multiferroics
Apotentialgeomagnetic-fieldsensorisproposedonthebasisofanoptimal2Dconfigurationof magne-toelectricNi-basedMetglas/PZTlaminates.Thissensorcanperfectlyservetomeasureboththestrength andtheorientationoftheearth’smagneticfield.AnincrediblyhighME-voltageresponseof0.871V/Oeto thegeomagneticfieldwitharesolutionof3×10−4Oehasbeenachievedforcompositelaminateswitha sizeof15mm×1mm.Withrespecttothefieldinclination,anangularsensitivityof3.86×10−3V/degree andanangularresolutionof10−1degreehavebeendetermined.Thissimpleandlow-costmagnetic-field sensorispromisingforapplicationsnotonlyasnovelsmartcompassesandinglobalpositioningdevices, butalsoasmagneticbiosensors
© 2012 Elsevier B.V All rights reserved
1 Introduction
Theprincipleofglobalpositioningisbasedonthefactthatboth
thestrengthandtheinclinationofthegeomagneticfieldisa
well-definedfunctionofthegeographicposition.Theweakgeomagnetic
fields,however,canonlybedetectedwithsensingdevicesofvery
highsensitivity.Besidethetraditionaltypesofmagneticsensorson
thebasisoffluxgate,Halleffect,superconductingquantum
interfer-enceandgiantmagnetoresistancespinvalves,suchasensorcould
recentlyberealizedthankstothemagnetoelectric(ME)effect[1–3]
Thissimple,low-costsensor,furthermore,isfeaturedby
function-ingattheroomtemperature
The ME effect has been observed in multiferroics and/or
ferromagnetic-ferroelectriccomposites(hereafterdenotedasME
materials) In these materials,an electric polarization P in the
materialshallrespondtotheappliedmagneticfieldH,whereasa
magnetizationMwillrespondtotheappliedelectricfieldE.The
polarizationprocessin anMEsampleasresponse tothe
exter-nalappliedmagneticfieldshallcreatesanelectricfieldofE=˛E·H,
where˛E(=dE/dH)denotesthemagnetoelectricvoltagecoefficient
Asaresult,avoltageVME=t·E(=˛E·t·H)appearsbetweenthe
sur-facesofthesampleofthethicknesst.Largemagnetoelectricvoltage
coefficientsofferpotentialdeviceapplicationsashighlysensitive
magnetic-fieldsensors,microwavefilters,transformers,and
gyra-tors[4]
∗ Corresponding author Tel.: +84 4 3754 9665; fax: +84 4 3754 7460.
E-mail address: giangdth@vnu.edu.vn (D.T.H Giang).
Regardingthehighmagnetoelectricvoltagecoefficients, mul-tiferroiccompositesonthebasisofmagnetostrictiveferritesand rareearth-transitionintermetallicshavebeenstudiedintensively sincethebeginningofthiscentury[2,3,5–10].Inparticular, opera-tionprinciple,designandfunctioningcharacteristicsofthesenew
MEsensorshavealsobeendescribed[2,3].Valuesofmagneticfield response (dVME/dH)as highas 0.06×10−3V/Oe, 56×10−3V/Oe and13×10−3V/OewerereportedforMEsensorsusing magne-tostrictive Ni0.5Zn0.5Fe2O3 ferrites [5], Terfenol-Dlaminates [6] andTerfecohanthinfilms[7],respectively.Inanapproachtouse
MEsensorsforthedeterminationofacmagnetic-fieldstrengths, Fetisovetal.[8]havesuccessfullydevelopedapromisingsensor withasensitivitybetterthan10−3Oeformilli-Hzfrequency mag-neticfields.Furthermore,strongeffortshavebeenundertakento enhancetheMEeffectsbyalteringtheshapeandthevolumeratioof thepiezoelectric/magnetostrictivelaminates[11]orbyimproving thelaminationprocess[12].Inthecaseofmicrofabrication,Greve
etal.[13]reportedagiantMEcoefficientashighas737V/cmOe for(Fe90Co10)78Si12B10-AlNthinfilmcomposites.Recently,anME sensorusingCo-basedMetglas/PZTlaminateswasdesigned, fab-ricatedandcharacterizedfordeterminingthestrengthsaswellas theorientationsofdc-andac-magneticfields[3],wherean ME-voltageresponse(dVME/dH)of2×10−3V/Oeatlowdcfieldsand,in particular,aresponse(dVME/dhac)ashighas17×10−3V/Oeatthe lowac-oneswasreported.Thesefindingsimplyagreatpotential forself-powereddetectionoflowac-magneticfields
For an optimal design of ME laminate sensors, modeling approaches have been undertaken by several research groups (e.g.[14–20]).While somemodels[15]havetakenintoaccount the effect of thethickness ratio betweenthe piezoelectric and
0924-4247/$ – see front matter © 2012 Elsevier B.V All rights reserved.
Trang 2Fig 1.Schematic of the bilayer (a) and sandwich (b) Ni-based Metglas/PZT composite configuration Vector H dc , h ac and P shows the applied magnetic fields and the electrical polarization direction, respectively.
magnetostrictivephases,otherfinite-elementmagnetostatic
sim-ulations[18–20]haveconsideredtheroleofthemagnetostrictive
lengthonthemagneticfieldconcentrationinMEsensors.Although
moreappropriatedescriptionsofsomespecificaspectsofsensor’s
behaviorseem still necessaryin themodels,theseresultshave
demonstratedausefulapproachtosignificantlyenhancethe
sensi-tivityofmagnetostrictive/piezoelectriclaminatesasgeomagnetic
fieldsensors
Inthispaper,apotentialgeomagneticsensorispresentedby
optimizingthe2DconfigurationofthemagnetoelectricNi-based
Metglas/PZT laminates At low dc-magnetic fields, a huge
ME-voltageresponseashighas0.871V/Oewasobtainedforthesensor
with size of 15mm× 1mm The sensor is promising not only
forapplicationsinnovelsmartcompassesandglobalpositioning
devices,butalsoinmagneticbiosensors
2 Experimental
TheMEmagnetic-fieldsensor wasfabricatedbybonding an
out-of-planepolarizedpiezoelectricPZTplatewith
magnetostric-tive laminates For this purpose, the 200-m-thick PZT plate
(APCC-855)of American Piezoceramics Inc., PA, USA wasused
Themagnetostrictivelaminateswerecutfromthe18-m-thick
Fe76.8Ni1.2B13.2Si8.8melt-spunribbons(alsocalledNi-based
Met-glas) in different sizes according to the length-to-width ratio
(r=L/W),withr=1,1.5,3,7.5and15,andusedforthevarious
sam-plesinthis work.It isworthtonotethattheNi-basedMetglas
ribbonisasoftmagnetostrictivematerialwithamagnetostriction
coefficient()ofabout70×10−6andamagnetostrictive
suscep-tibility(=d/dH)of 1.5×10−6Oe−1.Thanks tothe mechanic
coupling between the components, the PZT plate undergoes a
forcedstraininducedbythemagnetostrictivelayersunderthe
in-plane(and/orout-of-plane)appliedmagnetic field.In this case,
theME-voltageVMEisinducedacrossthethicknessofthe
piezo-electricplate.Fig.1presentstheconfigurationofsuchfabricated
bilayerMetglas/PZTandsandwichMetglas/PZT/MetglasME
com-positelaminates
Inthesampleconfigurationsunderinvestigation,alinear
elec-tric polarization P is induced by a weak ac magnetic field hac
(=hosin(2fot))oscillatingattheresonantfrequencyinthe
pres-enceofadcbiasfieldHandtheMEvoltageVMEisdirectlymeasured
asaresponseoftheMEcompositetotheappliedmagneticfield.In
theexperimentalsetup,thebiasfieldHwasprovidedbyan
electro-magnet,andtheoscillatingfieldwithamplitudesofhac=10−2Oe
was generated by a Helmholtz coil The output voltage (VME),
inducedacrossthePZTlayeroftheMElaminatebytheacfield(hac)
wasmeasuredonacommercialDSPlock-inamplifier(Model7265
ofSignalRecovery),whichsimultaneouslycontrolledtheinput
cur-renttotheHelmholtzcoil.Thevalueofthe˛Ecoefficientisderived
thenfromtheequation:˛ =V /hac·t
3 Results and discussion
3.1 Shapeandsizedependenceoftheresonantfrequency Fig.2showstheac-magnetic-field-frequencydependenceofthe
MEcoefficient˛E measuredunderafixedbiasdc-magneticfield
of4Oefortheinvestigatedsquare-shaped(r=1)bilayer compos-itelaminatesofdifferentsizesof8mm×8mm,10mm×10mm,
12mm×12mmand15mm×15mm.Theresultsshowthatwith theincreasinglaminatesize,theresonanceisshiftedtowardlower frequencies(fr),whereas˛Esignificantlyincreases.Theobserved phenomenacanbedescribedin termofthevibratingplates,in whichoneofthenaturalfrequencies(fnm)ofthemodesisobtained fromthesolutiontothetwo-dimensionalwaveequationin Carte-siancoordinates[21]:
fnm= v2
n2
L2 + m2
W2, withvasthewavevelocityinthePZT,nandmasintegernumbers (1,2 )
Indeed,theexperimentalresultsarewellfittedwitha funda-mental frequency f11 (i.e withn=m=1)(see Fig 3).From this description,thephasevelocityturnsouttobeof2800m/sforPZT Thisfindingisconsistentwiththatreportedforthepiezoelectric bulkmaterial.ForsandwichMetglas/PZT/Metglasstructures,the
MEeffectcanberemarkablyincreased,while theresonant fre-quencyexhibitsnochange
As regards to the shape effect, in this paper, rectangular composite laminateswithdifferentlengthtowidth ratioswere investigated.For thefabricationoftheinvestigatedsamples,its longitudinaledge(thelengthL)waskeptfixedat 15mmwhile itstransversaledge(thewidthW)wasvariedfrom1to15mm,
Fig 2.ME coefficient as a function of the ac magnetic field frequency for
Trang 3square-Fig 3.Resonant frequency vs.
(1/W 2 ) + (1/L 2 ) for square-shaped bilayer com-posites of different sizes L × W.
so that a series of rectangularlaminate samples was obtained
withtherespectivelength/widthratios(r=L/W)varyingfrom15
to1.Therespectivevaluesoftheresonantfrequencyfr,obtained
forthesesamplesareshowninFig.4forthecase themagnetic
fieldsareappliedalongthelengthofsamples.Itisinterestingthat,
exceptthesquare-shapedsample(withr=1),allcomposite
lami-natesexhibitaninvariantfrofabout100kHz,whichisnearly1.5
timeslowerthanthatobservedforthesamplewithr=1.Byusing
theaboveextractedwavevelocity,themeasuredresonant
frequen-ciesoftherectangularcompositelaminatesarewellfittedwiththe
fundamentalfrequenciesof theone-dimensionalwaveequation
f10=v/2L.Inthiscase,theresonantfrequencyisascribedasmainly
governedbythelongitudinallengthofthesample
3.2 ShapeandsizedependenceoftheMEcoefficient
Fig.5showsthebias-field dependenceof theMEcoefficient
for thedifferent investigated square-shaped samples measured
attheresonantfrequencies Ascanbeseen,for allsamplesthe
magnetoelectriccoefficientexhibitsasimilarbehavior:itinitially
increasesatlowappliedmagneticfields,reachesamaximumvalue
Fig 4. Resonant frequency vs the ratio of the length to the width r (= L/W) for bilayer
ME composites The fitted line f =v/2L is shown.
Fig 5.The magnetic field dependent of ME coefficient for 8 mm × 8 mm,
12 mm × 12 mm and 15 mm × 15 mm bilayer square-shaped samples.
ata certainmagneticfield(denotesastheoptimalfieldfor the maximalMEresponse)andthendecreaseswithfurther increas-ingmagneticfield.ItisapparentthatthevalueofMEcoefficient
isstronglyinfluencedbythesamplesize:thelargerthe interfa-cialarea (i.e.thesample size),thelower theoptimalmagnetic field,thehighertheMEvoltagecoefficientand,consequently,the highertheinitialslopeatlowmagneticfieldsisfoundforthe˛E(H) curves.Thisobservationcanbeunderstoodintermoftheso-called
“shearlagging”edgeeffect[22].Furthermore,ahugeME coeffi-cient of75.9V/cmOe isfoundatlowbiasfield ofonly10Oein thecomposite laminatewithr=1 By usingthesandwich Met-glas/PZT/Metglaslaminatestructures,theMEeffectcanincreaseup
to˛E=132.1V/cmOe.Althoughthisvalueisabout5timeslower thanthehighestMEcoefficientreportedfor(Fe90Co10)78Si12B10 -AlNthinfilmbyGreveetal.[13],thecompositelaminatesfabricated withasimpleandlow-costtechnologyinthisworksuggestavery promisingapplicationinpracticalsensors
Withthemotivationtofurtherenhancethelow-fieldMEvoltage coefficient,rectangular-shape compositelaminates withvarious length/width ratios have been prepared and investigated This motivation is basedon thefact that theenhancement of mag-netoelectric softness is related to the shape anisotropy Fig 6 showstheMEcoefficient˛Easafunctionofthedc-magneticfield strength forsandwichcomposite laminatesof differentsizesas
15mm×15mm,15mm×3mmand15mm×1mm, correspond-ingtotherespective length/widthratiosofr=1, 5and 15.The measurementswerecarriedoutwiththemagneticfieldsapplied
Fig 6.The ME coefficient as a function of bias magnetic field for rectangular-shaped sandwich Metglas/PZT/Metglas composites of different sizes 15 mm × 15 mm,
Trang 4Fig 7.ME coefficient measured at H dc = 2 Oe (open square) and maximum ME
coef-ficient (close circle) as a function of the length to the width ratio (L/W).
alongthelengthofthesample.Theresultsshowthatthe
maxi-malMEcoefficientissignificantlyunchangedinsampleswithhigh
rvalues(remainingsignificantlyat131V/cmOe,obtainedforthe
samplewithr=15,seeFig.7).Theoptimalmagneticfieldforthe
maximalME response,however, strongly decreasesfrom21Oe
inthesamplewithr=1to7Oeinthesamplewithr=15
Conse-quently,themuchhigherinitialslopeatlow-magneticfieldsofthe
˛E(H)curvesisobserved.Thisimportantbehaviorisillustratedin
Fig.7withthedatameasuredinanappliedfieldof2Oe.Thehighest
MEcoefficientof62.61V/cmOehasbeenfoundinthesamplewith
lengthtowidthratior=15.Aswillbepresentedinthenextsection,
forpracticalgeomagneticsensorapplications,theoptimalsizeof
15mm×1mm(i.e.r=15)couldbechosenforsensorprototypes
3.3 Geomagneticsensorprototype
Fig.8showsphotographsoftheMEcompositelaminatesand
ageomagneticsensorprototypefabricatedusinganME
compos-itelaminate withoptimalrectangularsize of 15mm×1mm A
solenoidcoiliswrappedaroundtheMEcompositelaminateto
gen-eratetheac-magneticfieldattheresonantfrequency.Theeffective
fieldisbythiswayalignedin-planeandalongthelengthofthe
ribbons(i.e.perpendiculartotheelectricalpolarizationofthePZT
plate).Fortestingthesensoroperationintherangeofthe
geomag-neticfieldstrength,aHelmholtzcoil suppliedbyaKeithley230
Fig 9. The output ME voltage as a function of bias magnetic field for sensor proto-type The fitted curve is included.
currentsourcewasusedtogeneratethebiasmagneticfieldsinthe rangeupto1.5Oewiththeaccuracyof10−5Oe
Shown in Fig 9 is theME voltage response tothe external magnetic field As can be seen, a linear variation of the ME-voltagewiththeexternal magneticfield hasbeenfoundinthe field rangeupto1.0Oe.From thisresult,thesensor sensitivity couldbederivedashighas0.871V/Oe.Inamoredetailedanalysis, thefield resolution of 3×10−4Oe hasbeen estimated Surpris-ingly,thepresentME-basedsensorexhibitsa sensitivity,which
istwoordersofmagnitudehigherthanthatpreviouslyreported forsimilarmagnetic-sensordevicesandiscomparablewiththatof availablecommercialgeomagneticsensors[23].Thisconfiguration presentsagoodcombinationoftheexcellentmagneticsoftnessof Ni-basedMetglasribbonsandtheeffectsoftheshapeanisotropy Thissensorenablestodetectnotonlythegeomagneticfields,but alsothemagnetic fieldsof magnetic micro- and nano-beadsin biochipapplications
Regardingtheapplicationoftheproposedsensorindetermining theorientationoftheEarth’smagneticfield,anotherexperimental setupis illustratedinFig.10(a).ShowninFig.10(b) isthe sen-soroutputvoltageasafunctionoftheϕ-anglebetweenthesensor axis,i.e.theaxisintheplanealongthelengthofthelaminate.The zeroangle(ϕ=0◦)isdefinedwhenthesensor isinsucha posi-tionthatitsaxisisalignedparalleltotheEarth’sNorthmagnetic Pole.Itisclearlyseenfromthisfigurethatbyrotatingthesensorin horizontalplanefromϕ=0–360◦,thesensorsignalvaries periodi-callywithϕ,reachingamaximumvalueof356mVintheparallel
Fig 8.Sensor construction: Ni-based Metglas/PZT 15 mm × 1 mm laminates (a) and sensor prototype where the coil generating an ac field directly wraps around the ME
Trang 5Fig 10.Experimental setup for measuring orientation of the Earth’s magnetic field
(a) and the output signal as a function of ϕ-angle between the sensor’s longitudinal
axis and the Earth’s North magnetic Pole (b).
alignments(i.e.ϕ=0and180◦)andvanishinginthe
perpendicu-laralignments(i.e.ϕ=90and270◦)ofthesensoraxiswithrespect
fromtheNorth-SouthdirectionoftheEarth’smagneticfield.This
findingsuggeststhatthefabricatedsensorcanbeusedfordetecting
boththestrengthandtheorientationofthegeomagneticfield
4 Concluding remarks
Thecompositelaminateconfigurationcombininghigh
perfor-manceNi-basedMetglasribbonsandpiezoelectricPZTplateshas
broughtbyanoptimalgiantmagnetoelectriceffectwitha
signif-icantMEcoefficientinthelowmagneticfieldrange.Apotential
geomagnetic-fieldsensorispreparedonthebasisoftheoptimal
laminateconfiguration.Thesensorcandetectpreciselynotonly
thestrength,butalsotheorientationoftheEarth’smagneticfield
Ahighsensibilityof0.871V/Oeandaresolutionintheorderof
10−4Oe withoutamplificationmake thisconfigurationa
poten-tialsensorforapplicationsinnovelsmartcompassesandglobal
positioningdevices
Acknowledgements
ThisworkwassupportedbyVietnamNationalUniversity,Hanoi
underthegrantedResearchProjectQG09.29,bytheNAFOSTEDof
VietnamundertheResearchProjectNumber103.02.86.09andby
theNationalProgramforSpaceTechnologyofVietnam.Theauthors
thankAssoc.Prof.Dr.N.T.HienfromtheVNUUniversityof
Engi-neeringandTechnologyforcriticalreadingofthemanuscript
References
[1] J Zhai, S Dong, Z Xing, J Li, D Viehland, Geomagnetic sensor based on giant
[7] M.I Bichurin, V.M Petrov, R.V Petrov, Y.U.V Kiliba, F.I Bukashev, A.Y.U Smirnov, D.N Eliseev, Magnetoelectric sensor of magnetic field, Ferroelectric
280 (2002) 199.
[8] Y Fetisov, A Bush, K Kamentsev, A Ostashchenko, G Srinivasan, Ferrite-piezoelectric multilayers for magnetic field sensors, IEEE Sens J 6 (2006) 935.
[9] J Ryu, S Priya, K Uchino, H Kim, D Viehland, High magnetoelectric properties
in 0.68Pb(Mg 1/3 Nb 2/3 )O 3 -0.32PbTiO 3 single crystal and Terfenol-D laminate composites, J Kor Ceram Soc 9 (2002) 813.
[10] J Ryu, S Priya, K Uchino, H Kim, Composites of magnetostrictive and piezo-electric materials, J Electroceram 8 (2002) 107.
[11] J Blackburn, M Vopsaroiu, M.G Cain, Composite multiferroics as magnetic field detectors: how to optimise magneto-electric coupling, Adv Appl Ceram 109 (2010) 169.
[12] M Li, D Berry, J Das, D Gray, J Li, D Viehland, Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process, J Am Ceram Soc 94 (2011) 3738.
[13] H Greve, E Woltermann, H.-J Quenzer, B Wagner, E Quandt, Giant magneto-electric coefficients in (Fe 90 Co 10 ) 78 Si 12 B 10 -AlN thin film composites, App Phys Lett 96 (2010) 182501.
[14] S.X Dong, J.F Li, D Viehland, Longitudinal and transverse magnetoelectric volt-age coefficients of magnetostrictive/piezoelectric laminate composite: theory, IEEE Trans Ultrason Ferroelectr Freq Control 50 (2003) 1253–1261 [15] C.W Nan, M.I Bichurin, S.X Dong, D Viehland, G.J Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status and future direc-tions, J Appl Phys 103 (2008) 031101.
[16] R Corcolle, L Daniel, F Bouillault, Modeling of magnetoelectric composites using homogenization techniques, Sens Lett 7 (2009) 446–450.
[17] T.T Nguyen, F Bouillault, L Daniel, X Mininger, Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect, J Appl Phys.
109 (2011) 084904.
[18] Z Fang, S.G Lu, F Li, S Datta, Q.M Zhang, M El Tahchi, Enhancing the magne-toelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect, Appl Phys Lett 95 (2009) 112903.
[19] J Gao, D Gray, Y Shen, J Li, D Viehland, Enhanced dc magnetic field sensitivity
by improved flux concentration in magnetoelectric laminates, Appl Phys Lett.
99 (2011) 153502.
[20] X.X Cui, S.X Dong, Theoretical analyses on effective magnetoelectric coupling coefficients in piezoelectric/piezomagnetic laminates, J Appl Phys 109 (2011) 083903.
[21] W.C Elmore, M.A Heald, Physics of Waves, Dover Publications, New York, 1985 [22] C.M Chang, G.P Carman, Modeling shear lag and demagnetization effects in magneto-electric laminate composites, Phys Rev B 76 (2007) 134116.
[23] M Johnson, Magnetoelectronics, Elsevier, Amsterdam, 2004.
Biographies
France in 2005 In 2006, she joined the Faculty of Engineering Physics and Nano-technology at VNU University of Engineering and Technology, Vietnam National University, Hanoi, where she is currently an assistant professor Her research interests include magnetostrictive, magnetoresistance, magnetoelectric and mul-tiferroics materials, sensors and microsystems.
P.A Ducreceived his BSc and MSc degree in Physics from Hanoi National University
in 2004 and 2007, respectively He is currently working on his PhD dissertation in the area of magnetoelectric composites and applications.
N.T Ngochas studied at the University of Engineering and Technology, Vietnam National University, Hanoi and is finishing her master in Nanotechnology She is developing 3D-sensor for geomagnetic applications.
N.H Ducjoined the Cryogenic Laboratory, University of Hanoi as researcher after his graduation from the same group in 1980 He obtained his doctor degree in the same group in 1988 He has then received the French Habilitation in Physics at the Joseph Fourier University of Grenoble in 1997 and became a full professor of the Col-lege of Technology (now VNU University of Engineering and Technology), Vietnam National University, Hanoi in 2004 His extended research includes various aspects
of magnetism, such as: 4f–3d exchange interactions; giant magnetovolume, magne-tostrictive, magnetoresistive and magnetocaloric effects; magnetic phase transition; magnetic nanostructures; multiferroics; MERAM and biochips.