TheporosityoftheHAp/PDLLAscaffoldswasmeasuredusing theliquidsubstitutionmethod[35].Distilledwaterwasusedas thedisplacement liquid.In brief,a dry sample of each scaffold wasweighed and th
Trang 1ContentslistsavailableatScienceDirect
jou rn a l h om ep ag e :w w w e l s e v i e r c o m / l o c a t e / c o l s u r f b
Biomimetic scaffolds based on hydroxyapatite nanorod/poly(d,l)
lactic acid with their corresponding apatite-forming capability and
biocompatibility for bone-tissue engineering
a School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Viet Nam
b Research Center for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai Street, Hanoi, Viet Nam
a r t i c l e i n f o
Article history:
Received 14 October 2014
Received in revised form 27 February 2015
Accepted 1 March 2015
Available online xxx
Keywords:
Biomimetic scaffolds
Poly(d,l) lactic acid
Hydroxyapatite nanorods
Apatite
Biocompatibility
Bone tissue engineering
a b s t r a c t
1 Introduction
Bone repair and regeneration have become a serious
chal-lenge in orthopedic surgery because of the increase in clinical
bonediseases(e.g.,boneinfections,bonetumors,andboneloss
throughtrauma)[1].Currenttherapiesfor bonedefectsinclude
autografts,allografts, and otherbone substitutes[2].Autografts
(bonesobtainedfromanotheranatomical sitein thesame
sub-ject)comprisethegoldstandardforthetreatmentofbonedefects,
but this surgicalmethodstill hasmajor disadvantages,suchas
thepossibility of donorsite morbidity, shortageof donor bone
supply,anatomicalandstructuralcomplications,aswellasgraft
∗ Corresponding author Tel.: +84 4 38680 110; fax: +84 4 38680 070.
E-mail address: nga.nguyenkim@hust.edu.vn (N.K Nga).
sorption[1].Allografts(bonesfromdonorsoranotherspecies)can
beusedasanalternative;however,thismethodcausesinherent problems(e.g.,diseasetransmissionandimmunogenicresponses) [3].Syntheticbonesubstitutes,whicharemostlymadeofmetalsor bioceramicsandglasses,haveosteoconductivepropertiesinstead
ofosteoinductiveproperties,thuslimitingtheiruse[4].Bone-tissue engineering(BTE)hasattractedscientificattentionforbeingmore effectivethanconventionalmethodsintermsofbonerepairand reconstruction The coreof BTE is to combinea biodegradable matrix(scaffold)andliving cellstogrowtissue invitroprior to implantationofthesubject[5].ScaffoldsforBTEshouldpossess severalproperties,suchashighporosity,amacroporousnetwork forinvitrocellmigration,adhesion,proliferation,andfurthertissue growth,biocompatibilityandbiodegradabilitytonon-toxic prod-ucts,aswellassufficientmechanicalstrength[1].Toachievethese properties,BTEscaffoldsareoftendesignedtomimicthestructural
http://dx.doi.org/10.1016/j.colsurfb.2015.03.001
0927-7765/© 2015 Elsevier B.V All rights reserved.
Trang 2and biological functions of a naturally occurring extracellular
matrix(ECM)intermsofbothchemicalcompositionandphysical
structure[6,7]
Inthisregard,biodegradable polymers,suchas
poly(l-lactic-co-glycolicacid) [8],poly(-caprolactone)[9],poly(l-lacticacid)
[10],andpoly(d,l-lacticacid)(PDLLA)[11],havebeenprocessed
intothree-dimensional(3D)scaffolds.Thesepolymersshowgood
mechanical properties, with shapes and degradation rates that
areeasilyadjustable.Themaindisadvantageofthesepolymeric
materialsistheirpurebiocompatibility, given that theydo not
provide a favorable surface for cell attachment and
prolifera-tionbecauseof thelackof specificcell-recognizablesignals[1]
Bioactiveinorganicmaterials,suchashydroxyapatite(HAp)[12],
-tricalciumphosphate[13,14],andbioactiveglasses[15,16],have
beendesignedas3Dporousscaffoldsforboneregeneration.The
advantagesofbioactiveceramicsaretheirexcellent
osteoconduc-tivityandbiocompatibility;however,theirinherentbrittlenessand
lowmechanicalstrength(forporousspecimens)aremajor
disad-vantagesindeveloping3Dscaffolds,thuslimitingtheirapplications
[13,15,17]
Polymer/bioceramiccompositescaffoldsareattracting
increas-ingattentionin thefield ofbone regeneration becauseoftheir
mechanical stability and biocompatibility [18,19] Among such
scaffolds, HAp/polymer composites have received considerable
interestbecauseoftheircompositionandstructuralsimilarityto
naturalbone[20,21].Boneisacomplexcompositethatcomprises
anorganicphase(90%typeIcollagen,othernon-collagenous
pro-teins(e.g.,proteoglycans)),minoramountsoflipidsandosteogenic
factors(e.g.,bonemorphogeneticproteins),andamineralphase
[22] The mineral phase consists of one or more types of
cal-ciumphosphatescomprising65–70%of boneand embeddedin
a protein matrix [22–24].Among theCaP salts,hydroxyapatite
(Ca10(PO4)6(OH)2,HAp)isthemoststablecalciumphosphatein
bodyfluidsandisthemostsimilartothemineralpartofbone[23]
ThebiologicalHApsfoundinphysiologicalhardtissuesare
irreg-ularlyrod-likeorplate-likecrystalsofvariablelengthsandwidths
(30–45nm)withathickness ofapproximately5nm[22].These
HApsareorientedtothec-axis,whichisparalleltothecollagen
fibrils[22,25]inwhichdifferentcelltypes,includingosteoblasts,
osteoclasts,andosteocytes,reside.Asurveyoftheliteratureshows
thatbioceramicsthatmimic bonemineralinterms of
composi-tion,structure,andmorphologycanpromoteosteointegrationand
subsequentbonetissueformation[26–28]
PDLLAisanontoxic,biocompatible,andbiodegradable
mate-rialthathasbeenusedassuturesandtissue-engineeringscaffolds
[29].However, PDLLApresentsstronghydrophobicity owingto
theabsenceofhydrophilicgroupsandsuitablefunctionalgroups
(e.g., NH2, OH),whichresultsintheabsenceof
osteoconductiv-ity.Arecentstudyfocusedonfabricatingbioactivenanocomposite
PDLLA/nano-HApmembranesusinganelectrospinningmethodto
improvetheosteoconductivityofthepolymer[30].However,the
productsarecharacterizedbysmallporesizeswithamean
diam-eterof4.8mand arethusunsuitable foruseasBTEscaffolds,
giventhattheminimumporesizerequirementforbonescaffolds
is100m[31]
Severalmethodshavebeendevelopedtofabricate3Dscaffolds
Thesemethodsincludefiberbonding,freezedrying,phase
separa-tion,super-criticalfluidtechnology,solventcastingcombinedwith
particulateleaching,andmeltmolding[1].Amongthesemethods,
solventcastingcombinedwithparticulateleachinghasbeenwidely
usedforfabricating3Dscaffoldsbecauseofitssimplicityand
effi-ciency.Thismethodallowstoproducehighlyporousscaffoldswith
porosityupto93%andmeanporediameterupto500mby
vary-ingporogenparticlessize,andweightratioofpolymertoporogen
withouttheneedofthespecializedequipment[1,32].Asaresult,
inthisstudy,solventcastingcombinedwithparticulate-leaching
methodhasbeen usedas anefficient control tosynthesize3D HApnanorod/poly(d,l)lacticacid(HAp/PDLLA)scaffolds.The rod-shapedHApnanoparticleswiththesamesize asboneminerals weresuccessfullypreparedinpaststudies[33,34]andhavesince beenusedasan inorganicphase toincorporateinto thePDLLA matrixandtopreparebiomimeticHAp/PDLLAscaffoldsforBTE Theapatite-formingcapabilityofthescaffoldswasdeterminedby assessingtheformationofbone-likeapatiteonthesurfaceofthe scaffoldsafterimmersinginsimulatedbodyfluids(SBFs) Mean-while, biocompatibilitywas investigated in direct contact with humanosteoblastcelllineMG63throughinvitrotests
2 Experimental
2.1 Chemicals
Allreagentswereofanalyticalgradeandusedasreceived with-outfurtherpurification.Calciumchloridedihydrate(CaCl2·2H2O), sodium monophosphate dihydrate (Na2HPO4·2H2O), NaOH,
C2H5OH,1,4-dioxane,hydrochloricacid(HCl),pluronicco-polymer PEO20–PPO70–PEO20 (P123), NaCl, NaHCO3, KCl, K2HPO4·3H2O, MgCl2·6H2O, Na2SO4, Tris-hydroxymethyl aminomethane ((HOCH2)3CNH2),phosphatebufferedsaline(PBS)wereobtained from Sigma–Aldrich PDLLA was purchased from Boehringer Ingelheim (Ingelheim, Germany) Deionized water was usedto prepareallsolutionsandreagents
2.2 Scaffoldproduction
The HAp nanorods used in this study were prepared using the hydrothermal method assisted by a pluronic co-polymer PEO20–PPO70–PEO20 The preparation and characterizations of theseHApnanorodswereconductedinthesamemannerasinour previouswork[33].HApnanorod/PDLLAscaffoldswerethen pre-paredusingsolventcastingcombinedwithsalt-leachingmethod withNaClastheporogen.A7%polymersolutionwasproducedby dissolving0.455gofPDLLAin6.5mLof1,4-dioxanefor3hat32◦C
AsuspensionofC2H5OHwithvariousamountsofHApnanorods (0–30wt.% HAptoPDLLA) wasaddeddropwise into thePDLLA solution.Theresultingmixturewasvigorouslystirredona mag-neticstirrerataspeedof500rpmfor2htoachievehomogeneity Thehomogeneousmixturewasthencastintoa55mmglassPetri dishcontaining9gofNaClwithparticlesizesof300–450m.The sampleswerethenair-driedunderachemicalhoodfor24hand vacuum-driedforanother24htoremoveallsolvents.The result-ingscaffoldswerethenimmersedindistilledwaterat35◦Cfor3d (waterwaschanged3–4timeseachday)toleachoutthesalt.The producedHAp/PDLLAscaffoldswerefurtherair-driedand vacuum-driedandthenstoredinadesiccatoruntiluse.Finally,fourscaffolds wereobtainedaccordingtothepercentageofHApnanorods.These scaffoldswerelabeledasS1,S2,S3,andS4for0wt.%HAp,10wt.% HAp,20wt.%HAp,and30wt.%HAp,respectively
2.3 Scaffoldcharacterization
Themorphologiesandporestructuresoftheproducedscaffolds wereexaminedusingfieldemissionscanningelectronmicroscopy (FE-SEM)(Supra40,Zeiss,Germany)atlow(200×)andhigh(500×,
1000×and5000×)magnifications,aswellasopticalmicroscopy (SMZ800,Nikon,Japan).PriortoFE-SEMobservation,thedry sam-plesofthescaffoldswerecutintosmalldisks,whichweremounted
onanSEMstubandthensputter-coatedwithathinchromiumlayer (Quorumtech,Q150TESTurboChromiumSputter-Evaporator).The meanporediameterandporewallthicknessofthescaffoldswere measuredbyusingscanningelectronmicroscopic(SEM) images throughImageJsoftware.TheFouriertransforminfraredspectra
Trang 3(FTIR)ofthescaffoldswererecordedonaNicolet6700
spectrom-eterusing KBrpellettechnique inthe rangeof 4000–400cm−1
witharesolution of4cm−1.Allmeasurementswereperformed
at25◦C.ThecompositionofHApnanoparticlesonthesurfaceof
HAp/PDLLAscaffoldswasexaminedthroughenergy-dispersive
X-rayspectroscopy(EDXS)(NovaNanoSEM450,FEI)
TheporosityoftheHAp/PDLLAscaffoldswasmeasuredusing
theliquidsubstitutionmethod[35].Distilledwaterwasusedas
thedisplacement liquid.In brief,a dry sample of each scaffold
wasweighed and then immersed in a graduated cylinder
con-tainingaknownvolumeV1 ofwaterandlefttostandtoenable
the water to penetrate into the pores of the scaffold sample
until no air bubbles emerged from thescaffold The total
vol-umeofwater and water-impregnated scaffold wasrecordedas
V2.Thevolumedifference(V2−V1)representsthevolumeofthe
HAp/PDLLAscaffoldskeleton.Thewater-impregnatedscaffoldwas
thenremovedfromthegraduatedcylinder,andtheresidualwater
volumewasrecordedasV3.Thetotalvolumeofthescaffoldisgiven
byV=(V2−V1)+(V1−V3)=(V2−V3).Bymeasuringtheinitialand
finalweightsWiandWfofthescaffoldsbeforeandafterimmersing
inwater,wecancalculatetheporevolumeofthescaffoldas
Wf−Wi
Theporosityofthescaffoldcanbecalculatedusingthefollowing
equation:
Porosity= (Wf−Wi)/H2 O
V2−V3
(2)
Atleastfivemeasurementswereconductedforeachscaffold,
andtheresultswereaveragedfromthesefivemeasurements
2.4 Invitromineralizationtests
Invitromineralizationtestswereconductedthroughthe
incu-bationoftheHAp/PDLLAscaffoldsinSBFs.SBFwaspreparedas
describedpreviously[36],filteredusinga0.22mMilliporefilter
systemtoeliminatebacterialcontamination,and thenstoredin
aplasticbottleinarefrigeratorat4◦C.Afterdisinfectionin70%
ethanolat4◦C,threesamplesofeachscaffoldwereimmersedin
30mL ofSBF solution placed in closed polyethylenecontainers
at37◦C.AfterbeingimmersedinSBFforthedesigneddays,the
sampleswereremoved,gentlyrinsedwithdeionizedwater,and
driedunderwarmflowingair.Therinsingprocesshasbeenusedto
removetheresidualionsoftheSBFsolutionsthatremainedonthe
scaffoldsamplesandcouldaffectthescaffoldstructure.All
opera-tionswereconductedinalaminarairflowhoodtoavoidbacterial
infection.Theapatite-formingcapabilityofHAp/PDLLAscaffolds
wasassessedthroughFE-SEMandEDXS
2.5 Invitrocellcultureexperiments
Humanosteoblastcells(MG63cellline,IZSLERBiobankingof
VeterinaryResources,Brescia,Italy)wereusedtoevaluate
biocom-patibilityofthepreparedHAp/PDLLAscaffolds.Cellsweregrown
inaminimumessentialmedium(Gibco)supplementedwith10%
(v/v) fetal bovine serum (Gibco), 2% (v/v) l-glutamine (Gibco),
1%(v/v)antibiotic,1%(v/v)sodiumpyruvate,and1%(v/v)
non-essentialaminoacids(Gibco)at37◦C and5%CO2.Themedium
waschangedevery2d.Theadherentcellswereallowedtoreach
confluence,thendetachedwith0.1%trypsin
ethylenediaminetet-raaceticacid, andsuspended ina freshculturemedium forthe
experiments
Priortocellseeding,thepreparedHAp/PDLLAscaffoldsamples
withadiameterof8mmweresterilizedin70%ethanolat4◦Cfor
24h,washedwithsteriledistilledwater,andimmersedinaculture
mediumfor1hbeforeseeding.Thereafter,thesampleswereplaced
on48-wellplates.20Lofcellsuspensionatadensityof7.5×104
cellspersamplewasseededonscaffoldsamples.Thesampleswere thenincubatedat37◦Cfor2htoallowcellattachmenttothe scaf-foldsurfaces,followedbyadding250Lofculturemediuminto eachwell.Cultureplateswerethentransferredtoanincubatorat
37◦Cand5%CO2.Culturetimeswere3,5,and7d,andthefresh culturemediumwaschangedevery2d
Cellviabilityandproliferationweredeterminedaftereach incu-bationtime usingalamarBlueassay.Theassayswereperformed after3,5,and7dofcellseeding,accordingtothemanufacturer’s protocol.Briefly,attheendofeachincubationtime,theculture mediumwasremovedfromthewellsandfreshculturemedium with10%(v/v)alamarBluewasaddedtoeach well.After4hof incubationat37◦C,aliquotsof100Lwerepipettedinto96-well plates,andfluorescencewasrecordedonamicroplatereaderatan excitationwavelengthof565nmandanemissionwavelengthof
595nm
Cell morphology, growth, and distribution were visualized afterstainingwithOregonGreen488phalloidin(Life Technolo-gies;Carlsbad,CA,USA)and4,6-diamidino-2-phenylindole(DAPI, Sigma–Aldrich).Cellswerefixedwith4%(w/v)formaldehydein PBS,permeabilizedwith0.2%TritonX inPBS,and stainedwith OregonGreen488andDAPI,accordingtothemanufacturer’s pro-tocol.AfterthreerinseswithPBS,thesampleswereexaminedusing confocallasermicroscopy
2.6 Statisticalanalysis
Resultswereaveragedandexpressedasmean±standard devi-ation.StatisticalanalysiswasperformedusingANOVA.Avalueof
P<0.05wasconsideredstatisticallysignificant
3 Results and discussion
3.1 Characterizationofthesynthesizedscaffolds
Four HAp/PDLLA scaffolds were synthesized with different weightpercentagesofHAp(onescaffoldwithoutHApfillingandthe otherthreescaffoldswithHApfilling).Thecompositionsandother characteristicsoftheproducedscaffoldsaresummarizedinTable1 Fig.I1(supportingmaterial)showdigitalcameraimagesofthe scaf-foldsamples(S3andS4scaffolds)andtheopticalimagesofatypical S3scaffold sample (Fig.I2).These scaffoldshave stableshapes, thicknessesof2mm(Fig.I1),andporousstructures(Fig.I2).Surface morphologiesandpore structureswerethen examinedthrough FE-SEMimaging.TheSEMimagesofallsynthesizedscaffoldsare presentedinFig.1andFig.I3.Observationsshowthatthesurface morphologies of thescaffoldsbecome coarseras theHAp con-tentincreases.AsmoothsurfacemorphologywasproducedforS1 PDLLAscaffolds(Fig.1aandI3A),whereascoarsesurface morpholo-gieswereobtainedfor HAp/PDLLAscaffolds.HAp nanoparticles werehomogeneouslydepositedwithintheporewallsofthe scaf-folds(Fig.1b–d) FE-SEMimageswithhighmagnifications(Fig I3B–D)indicatedthatnoaggregatesofnanoparticlesappearedon theporewallsforallcompositescaffolds.Moreover,thinporewalls
of1.48±0.28mwereobserved(Fig.I3B)forS2scaffoldwitha lowHAppercentageof10wt.%.AfurtherincreaseinHAp percent-ageproducedscaffoldswiththickerporewallsof1.81±0.3and 3.94±0.63m(Fig.I3CandD)forS3andS4scaffolds,respectively Fig.I3E(FE-SEMimageofahighermagnificationforS4scaffold) showedthattinyrod-likeHApparticleswereembeddedonthe polymerphase.AccordingtoTable1,increasingHAppercentage resultedinadecreaseinporesizesoftheproducedscaffolds Fur-thermore,statisticalanalysisandporesizedistributionofS1PDLLA
Trang 4Table 1
Composition and some characteristics of HAp/PDLLA composite scaffolds.
a Actual amount of HAp in total PDLLA.
b Mean value ± standard deviation (SD); n = 30.
c Mean value ± standard deviation; n = 5.
scaffolds(Fig.I4A)demonstratethatthesescaffoldshaveporesizes,
whicharesignificantlylargerthanthoseoftheHAp/PDLLA
scaf-folds(IP<0.001)andaremainlyintherangeof100–450mwitha
meanporesizeof274m.S2andS3HAp/PDLLAscaffoldshave
meanporesizesof183and122m(Table1)withintherange
of100–350mand50–300m,respectively(Fig.I4BandC);
dif-ferencesintheirporesizesarestatisticallysignificant(IP<0.001)
S4HAp/PDLLAscaffoldshavethesmallestporesizeswithamean
poresizeof117m(Table1).However,statisticalanalysisshowed
thatporesizesofS4HAp/PDLLAscaffoldsaresignificantlysmaller
thanthoseofS1PDLLAandS2HAp/PDLLAscaffolds(IP<0.001),
butnotsignificantlysmallerthanthoseofS3HAp/PDLLAscaffolds
(P>0.05).TheobtainedresultsconfirmthatHApcontentgreatly
affectstheporestructureandoverallmorphologyofthecomposite
scaffolds.HigherHApcontentresultedintheproductionof
scaf-foldswithsmallporesizesandthickporewalls.Thepaststudies
demonstratedthatporesinscaffoldsplayanimportantroleinbone
tissueformation.Largepores(100–150and150–200m)showed
substantialboneingrowth,whilepores(75–100m)resultedin
ingrowthofunmineralizedosteoidtissue,andsmallerpores(10–44
and44–75m)werepenetratedonlybyfibroustissues[37,38].Our
resultsindicatedthattheproducedcompositescaffoldshavemean
poresizesof117–183m,whichisbelievedtobesuitableforBTE
scaffolds
To evaluate the interaction between PDLLA matrix and the
inorganicphase,FTIRspectraofnano-HAp(a),typicalHAp/PDLLA
scaffolds(bandc),andPDLLAscaffolds(d)arepresentedinFig.2A ThespectraoftheHAp/PDLLAscaffoldsdonotexhibitsignificant differences, which reveal thepresence of HAp onthe compos-itescaffolds.Infact,thestretchingandbendingvibrationsofthe
PO4 −groupsforHAparevisibleat1090,1030,953,602,561,and
469cm−1inthespectraoftheHAp/PDLLAscaffolds.However,these vibrationsaredetectedat1095,1032,955,604,563,and471cm−1
inthespectrumoftheHApsample.Astrongbandat1749cm−1 canbeobservedinthespectrumofS1PDLLAscaffold.Thisband
isassignedtothevibrationofthecarbonylgroup(C O)ofPDLLA However,thisbandshiftsto1754and1752cm−1 forS3andS4 HAp/PDLLAscaffolds,respectively.Inaddition,thecharacteristic peaksforC Hvibrationsweredetectedat2999and2951cm−1 fortheS1PDLLAscaffold, butobservedat2996and 2946cm−1 andat2998and2948cm−1 forS3andS4HAp/PDLLAscaffolds These resultsreveal that some molecularinteractions between HApnanoparticlesandPDLLAinthecompositescaffoldsmayhave occurred.Moreover,theweakpeakat3569cm−1ischaracteristic
ofthevibrationoftheOHgroupofHApnanoparticles.However, thispeakappearedatalowerregionat3501and3496cm−1forthe S3andS4scaffolds,respectively.Thisresultsuggeststhathydrogen bondwasformedbetweentheOHgroupofHApandtheC Ogroup
ofPDLLA,thusmakingtheHApnanoparticlesstableinthepolymer matrix
Thepresence ofHAp onthesurfaceof theHAp/PDLLA scaf-folds was verified by EDXS analysis The EDXS spectra and
Fig 1. FE-SEM images of scaffolds, synthesized at different percentages of HAp to PDLLA: (a) S1 PDLLA scaffold, (b) S2 HAp/PDLLA scaffold, (c) S3 HAp/PDLLA scaffold, and (d) S4 HAp/PDLLA scaffold at low magnification of (200×) The insets represent FE-SEM images at higher magnification of (500×).
Trang 5Fig 2.(A) FTIR spectra of (a) nano-HAp powder, (b) S3 HAp/PDLLA scaffold, (c)
S4 HAp/PDLLA scaffold, and (d) S1 PDLLA scaffold and (B) EDXS spectrum of S4
HAp/PDLLA scaffold.
components of a typical S4HAp/PDLLA scaffold are illustrated
in Fig 2B Three elements, namely, O, P, and Ca, are the
majorconstituentsof thesynthesized HAp/PDLLAscaffold with
45.03±1.63at.%,5.64±0.47at.%,and9.58±0.52at.%,respectively
A trace of Cl (0.71±0.06at.%) was detected, which could be
attributedtoaresidueofthesynthesisreaction,andwas
incom-pletely eliminated from the scaffold sample through washing
Moreover,thepresenceofCinthescaffoldsamplescanpossiblybe
attributedtotheuseofcarbonadhesivetapetomountthesamples
orthepresenceofCinthepolymermatrix.Sincedelicateparticles
couldeasilybeaffected,thereforecarbonadhesivetapecouldaffect
thescaffoldmorphology.However,theCa/Pratiowas1.69,which
wasclosetothestoichiometricvalueof1.67.Thisresultconfirms
thattheHApnanoparticlesweresuccessfullyincorporatedintothe
scaffolds
Theporosity data of thesynthesized scaffoldsare shown in
Table1.Theexperimentalresultsindicatethattheporositychanges
linearlywiththeincreaseinHApcontentandexhibitsadownward
trendwithHAploading.WithintheHApcontentrangestudied,the
porosityvaluesvariedfrom89.39±2.86%to80.18±0.78%,which
showrelativelyhighporosityforallproducedscaffolds.Thehigh
porositylevelsofthesynthesizedscaffoldssuggestedthatthese
scaffoldswouldbebeneficialforinvitrocelladhesion,ingrowth,
andsurvival
3.2 Apatite-formingcapability
Animportantcharacteristicofthescaffoldsistheircapabilityto formanapatitelayerontheirsurfaces.Fig.3presentsthesurface morphologiesoftypicalHAp/PDLLAscaffoldsafterbeingimmersed
inSBFfor5and7d.TheFE-SEMimageofS3HAp/PDLLAscaffold withlowmagnification(Fig.3a)showsthataminerallayerwas alreadyformed.Thislayercoveredthescaffoldsurfaceafter5d
ofsoakinginSBF.Theimagewithhighermagnification(Fig.3b) confirmsthattheminerallayerconsistedofaggregatedflower-like particleswithameandiameterof1.08m.Theseparticleswere formedonthesurfaceandinsidethescaffoldpores.Thegrowthof theflower-likeparticleswasobservedwhenthesoakingtimewas prolongedto7d.Asshowninthelow-resolutionFE-SEMimagein Fig.3c,theparticlesgrewlarger(theirmeandiameterincreasedto 1.81m).TheFE-SEMimagewithahighresolution(Fig.3d) indi-catestheformationoftheflower-likeminerallayerconsistingof tinyneedle-likecrystalsonthescaffoldsurfaceafter7dofsoaking
inSBF.ThesurfacemorphologiesofS4HAp/PDLLAscaffoldafter7d
ofsoakinginSBFaresimilartothoseoftheS3HAp/PDLLAscaffold However,theintenseformationofsuchparticleswasobservedon theentiresurfaceoftheS4HAp/PDLLAscaffold(Fig.3e).The high-resolutionFE-SEMimage(Fig.3f)showedthatarose-likemineral layerwasexclusivelyproducedfortheS4HAp/PDLLAscaffold.This minerallayermorphologyistypicalforbone-likeapatite[36,39] Theobtainedresultsconfirmthecompleteformationofthe min-erallayeronthesurfacesofbothS3andS4HAp/PDLLAscaffolds after7dofsoakinginSBF.ToexploretheeffectofHAp nanopar-ticlesontheapatite-formingcapabilityofthecompositescaffolds,
invitromineralizationexperimentsofpurePDLLAandHAp/PDLLA scaffoldswith10wt.%ofHApwereexamined.Fig.I5showsthe FE-SEMimagesoftheS1PDLLAscaffoldafterbeingimmersedin SBFfor5and7dandthatofS2HAp/PDLLAscaffoldafter7d.Only severalspherical-likemineralparticlesformedonthesurfaceof theS1PDLLAscaffoldafter5dofsoakinginSBF (Fig.I5A).The number ofthemineralparticles increasedafter7 din SBF,and somebundlesofaggregatedmineral-likecrystals(Fig.I5B)were foundonthescaffoldsurfacebecauseoftheconjunctionofsuch particles,indicating poormineralization-formingcapability.The additionofHApat10wt.%tothePDLLAscaffoldalmostdidnot improvethemineralization-formingcapabilityofthecomposite scaffolds.TheFE-SEMimagein Fig.I5Cshowedthat thesevere aggregationofmineral-likecrystalswasobservedonthesurface
oftheS2HAp/PDLLAscaffoldafterbeingimmersedinSBFfor7d Meanwhile,theHAp/PDLLAscaffoldswithhighHApamounts(20 and30wt.%)alreadyshowedfullcoveragebytheminerallayerwith flower-likemorphologyontheirsurfacesafter7d,whichrevealed
asignificantlyhigherinvitromineralizationresponsethanthoseof purePDLLAscaffoldsandscaffoldswith10wt.%ofHAp Mineraliza-tioninvolvesthenucleationandgrowthofbone-likeapatiteonto biomaterials,whichisassociatedwithuptakeofcalciumand phos-phateionsfromthephysiologicalenvironment TheHAp/PDLLA scaffoldswithhighHAppercentagesprovidemorenucleationsites (Ca2+)forapatiteformationthanthesamecompositescaffoldswith lowHAppercentages(e.g.,10wt.%HAp)andaccordingly demon-stratebetterinvitromineralization.Ourresultsindicatethatthe HApcontentinthescaffoldssignificantlyaffectstheinductionof theminerallayerontheirsurfaces.HApcontentof 20–30wt.%, which isrelative toPDLLAis optimalforproducing HAp/PDLLA scaffoldswithhighinvitromineralization
Thechemical compositionof thereleasedminerallayerwas furtheranalyzedusing EDXSmethod.EDXSanalyseswere con-ductedfor thetypicalcomposite scaffoldsafterbeingsoakedin SBF.TableI1presentstheelementalcompositionsofthemineral layersreleasedonS3HAp/PDLLAscaffoldafterbeingsoakedinSBF for5and7d.Ca,P,andOarethreemainelementsfoundinthe
Trang 6Fig 3. FE-SEM images of representative HAp/PDLLA composite scaffolds after immersion in SBF: (a and b) at 5 d with magnifications of (5000×) and (10,000×), and (c and d) at 7 d with magnifications of (5000×) and (50,000×) for S3 HAp/PDLLA scaffold; (e and f) at 7 d with magnifications of (5000×) and (50,000×) for S4 HAp/PDLLA scaffold.
releasedminerallayersaftersoakinginSBFfor5and7d
How-ever,NaandClweredetectedastraceelements(forthemineral
layer,releasedafter5dinSBF),whichwasattributedtotheresidue
fromthereactionsynthesis ofthescaffolds.AccordingtoTable
I1,theCa/Pratioswere1.24and1.55fortheminerallayers
pro-ducedonthescaffoldafter5and7dofsoakinginSBF,respectively
Apartfromapatitemineral,anumberofothercalciumphosphate
minerals(e.g.,amorphouscalciumphosphate,dicalciumphosphate
dihydrate,octacalciumphosphate,tricalciumphosphate,aswellas
␣-and-Ca3(PO4)2)canbeproducedunderthesameinvitro
con-ditionsthatformapatite.Theresultssuggestthatafter7dinSBFa
newbone-likeapatitephasewasalreadyproducedontheS3
scaf-fold,butafter5dinSBFdicalciumphosphateand/oroctacalcium
phosphateasintermediatephaseswereprobablyreleasedonthe
scaffold.Moreover,theCa/Pratiooftheproducedminerallayerwas
1.55,whichwaslowerthanthestoichiometricvalueof1.67,and
wasattributedtothecalcium-deficientcarbonatedhydroxyapatite,
whichsuggeststhattheformedapatiteiscarbonated
Table I2 compares the apatite-forming capability of the
HAp/PDLLA scaffolds as synthesized in this study with other
compositematerialsreportedinpreviousstudies.Thecomplete
formationofthebone-likeapatitelayerwasobservedafter7dof
incubationinSBFfortheHAp/PDLLAscaffoldsinthisstudy
How-ever,thesamelayerwasobtainedafteralongertime(21and14
d)forthenano-HAp/PDLLAfilms[40]andAkermanite/PDLLA scaf-folds[41],respectively.Moreover,thebone-likeapatitelayerwith flower-likemorphologywasobtainedfortheHAp/PDLLAscaffolds synthesizedinthisstudy(Fig.3 andf).Meanwhile,thebone-like apatitelayerformedonnano-HAp/PDLLAfilmsconsistedof numer-ousuniform-orbicular aggregates,and a worm-likemorphology wasproducedonAkermanite/PDLLAscaffolds,whichsignificantly differfromthosereleasedontheHAp/PDLLAscaffoldsinthisstudy Thecomparison revealedthat theHAp/PDLLAscaffolds demon-strated betterin vitro mineralization thanthe other composite materials, which could be attributed to the similarity (e.g., in morphologyandcomposition)oftheinorganiccomponentofthe scaffoldstothatofnaturalbone.AsshowninTableI2,theinorganic componentoftheHAp/PDLLAscaffoldsinthisstudyiscomposed
of rod-shapedHApparticles withdiameter rangingfrom 25to
30nmandlengthrangingfrom100to130nm,whichissimilar
tothevaluesforboneminerals.Theinorganiccomponentsofthe othermaterialsexhibitmorphologicaland compositional differ-encesfromthoseoftheHAp/PDLLAscaffoldsandboneminerals (seeTableI2).Based onthecomparisonoftheinvitro mineral-izationinthepresentandpreviousstudies,themorphologyand compositionoftheinorganicpartofthescaffoldshaveacrucial functionin theirbioactivityand in promotingbone-likeapatite formation
Trang 7Fig 4.Cell viability and proliferation on the scaffolds after 3, 5, and 7 d of culture
through alamarBlue assay All data are expressed as means ± SD; n = 6 *P < 0.001
(data compared with those at longer culture time, and with S1 PDLLA scaffold),
**P < 0.01 and ***P < 0.05 (data compared with S1 PDLLA).
3.3 Invitrobiocompatibility
Cell–scaffoldinteractionsarethebasisofinitialcellattachment
andinfluencecellphenotypesandfunctions.Inthisstudy,invitro
cellculturetestswereconductedtoevaluatebiocompatibilityof
thesynthesizedscaffoldsintermsofcellviability,proliferation,and
attachment
Fig.4showsresultsofthealamarBlueassay,whichwas
per-formedafterMG63 cells culturedonthescaffoldsandthecell
cultureplates(servedasthecontrolgroup)for3,5,and7d.The
alamarBluereductionindicatedtheviabilityandproliferationof
MG63cells.Fig.4showsnosignificantdifferenceinthecell
viabil-itybetweenallscaffoldgroupsandthecontrolgroupafter3dof
culture.Statisticalanalysisalsoshowedthatdifferencesinthecell
viabilityamongallgroupswerenotsignificantafter3d(P>0.05)
AsshowninFig.4,thefluorescencevaluesforallscaffoldgroups
(athigherlevelsthan thoseof thecontrolgroups)increasedas
theculturetimeincreasedto5and7d,whichrevealedthatthe
cellviabilityofthescaffoldssignificantlyincreasedwithinthis
cul-tureduration(*P<0.001).At5d,thecellviabilityonS2HAp/PDLLA
scaffoldwassignificantlyhigherthanthatonpurePDLLAscaffold
(**P<0.01),butthecellviabilityforS3andS4HAp/PDLLAscaffolds
showednosignificantdifferencewiththatofpurePDLLAscaffold
At7d,thecellviabilityforallHAp/PDLLAscaffoldsbecame
signif-icantlyhigherthanthatofpurePDLLAscaffold(*P<0.001).TheS2
HAp/PDLLAscaffolds(with10wt.%HAp)demonstratedbettercell
viabilitythantheotherscaffoldsfordifferentculturetimes(5and
7d)(***P<0.05),whereasthecellviabilityforS3andS4scaffolds
wascomparableforalltheculturetimes(Fig.4)
Previousstudiesprovedthatsmallporesmightpreventcellular
penetrationandmigrationwithinscaffolds[31].Amongthe
scaf-foldsstudied,S1PDLLAscaffoldwascharacterizedbythelargest
poresizes,but thecellviabilityofS1PDLLAscaffoldwaslower
thanthatoftheHAp/PDLLAscaffolds.Thisresultcanbeattributed
totheabsenceoftheHApcomponentinthecompositionofS1
PDLLAscaffold Asa result,the surfaceof S1 PDLLAscaffold is
lackinginfunctionalgroupsascell-recognitionsignals(e.g.,OH
groups)anddoesnotsupportthatattachmentofmanycellstothe
PDLLAscaffold,evenifmanyMG63cellscanmigratetothe
scaf-fold.Amongthethreecompositescaffolds,S2HAp/PDLLAscaffolds
presenthighercellviabilitythantheothertwoscaffolds,which
maybeattributedtothefactthattheypossesslargerporesizes
(meanporesizeof183m)thanS3andS4scaffolds(meanpore sizesof122and117m,respectively).Thisresultprobablycaused morebeneficialcellmigrationandhighercellviabilityontheS2 scaffoldsthanontheS3andS4scaffolds.Theresultsofthe alamar-Blueassayindicatethatallthescaffoldsexhibitgoodcellviability, andtheadditionofHApnanorodstothePDLLAscaffold signifi-cantlyenhancedtheviabilityofMG63 cells.However,thehigh contentof HApinthescaffoldsmayinhibit theincrease incell viability
Confocallasermicroscopywasusedtoexaminecellattachment anddistribution.Fig.I6andFig.5showtheconfocallaserscanning microscopyimagesofMG63cellsculturedonthescaffoldsafter3,
5,and7d.ThestainingmethodsfornucleibyDAPIandforactin fila-mentsbyOregonGreen488phalloidinindicatethecellattachment andcytoskeletondistributiononthesurfacesofscaffolds.Infact, fewcellscouldbeobservedontheS1PDLLAandS2HAp/PDLLA scaffoldsat3d(Fig.I6AandB).Meanwhile,qualitativelyhigher
MG63cellswereobservedontheS3HAp/PDLLAandS4HAp/PDLLA scaffolds(Fig.I6CandD).Additionally,theanchorageofthecellular cytoskeletontothescaffoldswasobservedat3d,revealingthatcell attachmentoccurredonthesescaffoldsearlyintheculturetime.A furtherincreaseinculturetimeto5and7dresultedinasignificant increaseinthenumberofcellsforallscaffolds(Fig.5).At5d,all scaf-foldsshowedacytoskeletonarrangementofMG63cells,whichwas attachedtothescaffoldsurfaces(Fig.5a,c,eandg).Amongthem, theS2HAp/PDLLAscaffolddemonstratedauniformcytoskeleton arrangementwithahighdensityofMG63cellsinterconnecting theentirescaffoldat5d,butthecorrespondingcytoskeleton dis-tributionwasgraduallylostat7d(Fig.5d).TheS1PDLLAscaffold exhibitedarelativelyuniformcytoskeletondistributionat5d, how-ever,suchacytoskeletonarrangementintheS1scaffoldwaslost
at7d(Fig.5b).TheresultssuggestedthatHApnanorodsmayhave
aneffectonthecellattachmentinthesescaffolds.TheS1andS2 scaffoldswithsmallHAppercentages(0–10wt.%HAp)intheir com-positionprobablydidnotsupporttheformationofhighamountof stressfibersinthesescaffolds,whichmaintainactinbundlesand focalcontactsbetweenMG63cellsandthescaffoldsforalonger culturetime.Thisresultedinweakercellattachmentandgradual lossofcytoskeletonorganizationinS1andS2scaffoldsat7d.By contrast,amoreextendedcytoskeletonnetworkwasobservedin theS3HAp/PDLLA(Fig.5f)andS4HAp/PDLLAscaffolds(Fig.5h)
at7dthanat5d.TheseobservationsconfirmthathighHAp per-centages(20–30wt.%HAp)enabledS3andS4scaffoldstoproduce higheramountofstressfibers,whichledtostrongercell attach-mentandtheextendedcytoskeletonorganizationinthesescaffolds withincreasingculturetimeto7d.Moreover,awell-organized cytoskeletonnetworkwithalargenumberofadheredcellswas exclusivelyproducedintheS4HAp/PDLLAscaffoldat7d,which wasattributedtothehighestHAppercentageintheS4scaffold compositionamongthescaffoldsstudied.Theresultsrevealedthat allthescaffoldspossessgoodcelladhesion,proliferation,and distri-bution.AhighpercentageofHApinthecompositescaffoldsshould
behelpfulinsupportingcelladhesion,proliferation,and distribu-tionforlongercultureperiods
ThealamarBlueandconfocallasermicroscopyresults demon-strated that all the scaffolds showed good MG 63 cell affinity
in terms of cell viability, proliferation, and adhesion The S4 HAp/PDLLAscaffoldshavetheinorganiccomponentconsistingof HApnanorodswithameandiameterof28nmandameanlength
of120nm[33]andcomprise30wt.%oftheinorganiccomponent
tothepolymer,whicharetheclosestsimilaritytonaturalbone amongthescaffoldsstudied.Asaresult,theS4scaffoldsshowed higherbiocompatibility(bettercellattachmentandwell-organized cytoskeletonarrangement),comparedtotheotherscaffoldswith lowerHApcontentwithincreasingnumberofculturedays.The S4HAp/PDLLAscaffoldsthusare promisingcandidatesthat will
Trang 8Fig 5.Confocal laser scanning microscopy images of MG 63 cells stained nuclei with DAPI (blue) and actin filaments of cytoskeleton with Oregon Green 488 phalloidin (green) after 5 and 7 d of seeding on (a and b) S1 PDLLA scaffold, (c and d) S2 HAp/PDLLA scaffold, (e and f) S3 HAp/PDLLA scaffold, and (g and h) S4 HAp/PDLLA scaffold Scale bars represent 100 m (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
promoteproductionandorganizationofECMwithmineralization
andexpressionofosteopontin,collagentypeI,bonesialoprotein,
whicharetypicallyexpressedinnativeboneandwillbefurther
investigatedinthenextphaseofourwork
4 Conclusion
This study demonstrated that biomimetic 3D hydroxyap-atite nanorod/poly(d,l) lactic acid scaffolds were successfully
Trang 9synthesized using solvent casting combined with salt-leaching
technique The synthesized scaffolds are porous, have
thick-nesses of 2mm, macropore networks withmean pore sizes of
117–183m,andhighporosity.Bothinvitromineralizationand
invitrocellculturetestsshowedthatthecompositescaffoldswith
highHApcontents,whichhaveastructurethatistheclosesttothat
ofnaturalbone,inducedtherapidformationofbone-likeapatite
aftera quick soakingtime in SBF anddemonstrated bettercell
adhesion,proliferation,and distributionwithincreasingculture
days.Withinthisstudy,itisconcludedthatHAp/PDLLAscaffolds
withhighHAppercentagesarepotentialbiomaterialstobeusedas
BTEscaffoldsforfurtherstudiesthatwillbeaimedatperforming
long-term in vitro cell culture experiments, degradation
stud-ies, and deeper characterizations (mechanical strength, surface
roughness)
Acknowledgments
ThisstudywasfundedbytheVietnamNationalFoundationfor
Scienceand TechnologyDevelopment (NAFOSTED)under Grant
number104.02-2012.42
TheauthorswouldliketothankProf.C.MigliaresiandA.Motta,
DepartmentofIndustrialEngineeringandBIOtechResearchCentre,
UniversityofTrento,Italy,forsupportingcellcultureexperiments
Appendix A Supplementary data
Supplementary data associated with this article can be
found,intheonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb
2015.03.001
References
[1] D Puppi, F Chiellini, A.M Piras, E Chiellini, Prog Polym Sci 35 (2010) 403.
[2] S Zadegan, M Hosainalipour, H.R Rezaie, H Ghassai, M.A Shokrgozar, Mater.
Sci Eng C 31 (2011) 954.
[3] C.R Perry, Clin Orthop Relat Res 360 (1999) 71.
[4] S.N Khan, E Tomin, J.M Lane, Orthop Clin North Am 31 (2000) 389.
[5] I.O Smith, X.H Liu, L.A Smith, P.X Ma, WIREs Nanomed Nanobiotechnol 1
(2009) 226.
[6] D.W Hutmacher, Biomaterials 21 (2000) 2529.
[7] R.Y Zhang, P.X Ma, J Biomed Mater Res 52 (2000) 430.
[8] S.J Kim, D.H Jang, W.H Park, B.M Min, Polymer 51 (2010) 1320.
[9] J.M Williams, A Adewunmi, R.M Schek, C.L Flanagan, P.H Krebsbach, S.E Feinberg, S.J Hollister, S Das, Biomaterials 26 (2005) 4817.
[10] K.H Tan, C.K Chua, K.F Leong, C.M Cheah, W.S Gui, W.S Tan, F.E Wiria, Biomed Mater Eng 15 (2005) 113–124.
[11] F Intranuovo, D Howard, L.J White, R.K Johal, A.M Ghaemmaghami, P Favia, S.M Howdle, K.M Shakesheff, M.R Alexander, Acta Biomater 7 (2011) 3336.
[12] H.W Kim, J.C Knowles, H.E Kim, J Mater Sci Mater Med 16 (2005) 189.
[13] C.F.L Santos, A.P Silva, L Lopes, I Pires, I.J Correia, Mater Sci Eng C 32 (2012) 1293.
[14] N Mehrban, J Bowen, E Vorndran, U Gbureck, L.M Grover, Colloids Surf B: Biointerfaces 111 (2013) 469.
[15] Q.Z Chen, I.D Thompso, A.R Boccaccini, Biomaterials 27 (2006) 2414.
[16] S Yang, J Wang, L Tang, H Ao, H Tan, T Tang, C Liu, Colloids Surf B: Biointer-faces 116 (2014) 72.
[17] G Heimke, Adv Mater 1 (1989) 7.
[18] F.E Wiria, K.F Leong, C.K Chua, Y Liu, Acta Biomater 3 (2007) 1.
[19] R.L Simpson, F.E Wiria, A.A Amis, C.K Chua, K.F Leong, U.N Hansen, M Chan-drasekaran, M.W Lee, J Biomed Mater Res B: Appl Biomater 84 (2008) 17.
[20] R Murugan, S Ramakrishna, Compos Sci Technol 65 (2005) 2385.
[21] A Abdal-hay, F.A Sheikh, J.K Lim, Colloids Surf B: Biointerfaces 102 (2013) 635.
[22] R.Z LeGeros, Chem Rev 108 (2008) 4742.
[23] M Sadat-Shojai, M.T Khorasani, E Dinpanah-Khoshdargi, A Jamshidi, Acta Biomater 9 (2013) 7591.
[24] H Zhou, J Lee, Acta Biomater 7 (2011) 2769.
[25] Z Lu, S.I Roohani-Esfahani, G Wang, H Zreiqat, Nanomedicine 8 (2012) 507.
[26] Y Cai, Y Liu, W Yan, Q Hu, J Tao, M Zhang, Z Shi, R Tang, J Mater Chem 17 (2007) 3780.
[27] S.V Dorozhkin, Acta Biomater 6 (2010) 715.
[28] T.J Webster, C Ergun, R.H Doremus, R.W Siegel, R Bizios, Biomaterials 21 (2000) 1803.
[29] B Zou, X Li, H Zhuang, W Cui, J Zou, J Chen, Polym Degrad Stabil 96 (2011) 114.
[30] I Rajzer, E Menaszek, R Kwiatkowski, W Chrzanowski, J Mater Sci Mater Med 25 (2014) 1239.
[31] V Karageorgiou, D Kaplan, Biomaterials 25 (2005) 5474.
[32] L Chen, C.Y Tang, D.Z Chen, C.T Wong, C.P Tsui, Compos Sci Technol 71 (2011) 1842.
[33] N.K Nga, L.T Giang, P.H Viet, C Migliaresi, Colloids Surf B: Biointerfaces 116 (2014) 666.
[34] N.K Nguyen, M Leoni, D Maniglio, C Migliaresi, J Biomater Appl 28 (2013) 49.
[35] C.R Kothapalli, M.T Shaw, M Wei, Acta Biomater 1 (2005) 653.
[36] T Kokubo, H Takadama, Biomaterials 27 (2006) 2907.
[37] S.F Hulbert, F.A Young, R.S Mathews, J.J Klawitter, C.D Talbert, F.H Stelling,
J Biomed Mater Res 4 (1970) 433.
[38] J.J Klawitter, J.G Bagwell, A.M Weinstein, B.W Sauer, J Biomed Mater Res 10 (1976) 311.
[39] H Hu, Y Qiao, F Meng, X Liu, C Ding, Colloids Surf B: Biointerfaces 101 (2013) 83.
[40] C Deng, J Weng, X Lu, S.B Zhou, J.X Wan, S.X Qu, B Feng, X.H Li, Mater Sci Eng C 28 (2008) 1304.
[41] L Chen, D Zhai, C Wu, J Chang, Ceram Int 40 (2014) 12765.