chuyên đề II : hệ phơng trình1.. Kiến thức và kĩ năng cơ bản: 1.. Hai phơng pháp cơ bản giải hệ phơng trình :pp cộng và pp thế.. Hệ phơng trình bậc nhất hai ẩn và các hệ phơng trình qui
Trang 1chuyên đề II : hệ phơng trình
1 Kiến thức và kĩ năng cơ bản:
1 Hai phơng pháp cơ bản giải hệ phơng trình :pp cộng và pp thế
2 Hệ phơng trình bậc nhất hai ẩn và các hệ phơng trình qui về hệ bậc nhất hai ẩn bằng cách đặt ẩn phụ
3 Các loại hệ phơng trình bậc hai hai ẩn : hệ đối xứng, hệ đẳng cấp, hệ hổn hợp, hệ phơng trình tích …
4 Một số hệ phơng trình giải đợc bằng phơng pháp đánh giá
II Một số bài tập
Bài 1 Giải các hệ phơng trình sau:
1
−=
+
=
+
4 3 5
1 2
3
y x
y
x
2
= +
−
=
−
+
xy y
x
xy y
x
) 12 )(
5 (
)4 )(
5
(
3
=
−
+ +
=
−
+ +
5 3 2
2 3
2 15
5 3 2
4 3
2 5
y x y x
y x y
x
;
4
= +
+
−
= +
+
−
1 1 4
8 3 12 7
1 1 4
5 3 12 10
y x
y
x
; 5
= +
= +
1 9 8
1 3 16
2 2
2 2
y x
y
x
; 6
=
=
− 25 9
1 27 100
2 2
2 2
x y
y
x
;
7
=
− + +
=
−
− +
7 1
4 1
5 1
1 2
x x
x
x
; 8
− +
=
=
− +
−
1 5
1 5 1
x y
y
x
; 9
= +
−
=
−
+
0 11 3
0 12 3 2
y x
y x
Bài 2: Chứng minh rằng với mọi a hệ phơng trình
= +
=
−
−
1 3
1 2 )1
(
ay x
y x a
có nghiệm duy nhất(x,y) Khi đó tìm a để hiệu (x – y)đạt GTLN Bài 3 : Giải các hệ phơng trình sau:
1
= +
=
−
+ 7 2
5 2
2 2
2
y x
xy y
x
; 2
= + +
= +
+
2
4
2 2
xy y x
y xy
x
; 3
= + + +
= +
+
28 ) (3
11
2
x
xy y
x
4
= +
= +
+
30
11
2
2y xy x
xy y
x
; 5
−=
+
−
= + +
−
+
3
6
2 2
y x xy
xy y x y x
;
Trang 26
= + + +
= + + +
9 1 1
5 1 1
2 2 2 2
y x y x
y x y x
; 7
= + +
= + +
+
12 )1 )(
1 (
8
2 2
y x xy
y x y
x
; 8
= +
−
= +
−
0 15 13 2
9 3 2
2 2
2 2
y xy x
y xy x
9
=
−
−
=
−
+
15 3 9 5
38 4
5 3
2 2
2 2
y xy x
y xy
x
; 10
−=
+
= +
+
2
0 3
2
y y x x
y xy
x
; 11
= +
=
+
x y
y x
2 1
2 1
3
3
;
12
+
=
+
=
x y y
y x x
2 3
2 3
2
2
; 13
= +
= +
y x y
x y x
3 1 2
3 1 2
;
Bµi 4 :Gi¶i c¸c hÖ ph¬ng tr×nh sau:
1
= +
=
−
−
−
+
1
0 2 2
2 2
2 2
y x
y y xy x
x
; 2
= +
−
= +
−
0 5 3 2
0 2 3
2
2 2
xy x
y xy
x
;
3
= +
− +
−
=
− +
− +
−
0 3
3 2
0 24 45 12 4 15 2
2 2
2 2
xy x y y x
y x y xy
x
; 4
−
=
−
= + +
= + +
2
3 0
xyz
zx yz xy
z y x
;
5
= + +
= + +
= + +
1 1 1 1
27 9
z y x
zx yz xy
z y x
; 6
= +
= +
= +
7 16 15
xy zx
zx yz
yz xy
; 8
= + +
= + +
= + +
14 11 9
zx x z
yz z y
xy y x
;
9
−
= +
−
= +
−
= +
1 4
1 4
1 4
y x z
x z y
z y x
; 10
= + +
= + +
1 1
1 1
x y
y
x
; 11
= + + +
= + +
+
1
1
2 2 2 2
tx zt yz xy
t z y x
;
Trang 312
= +
= +
= +
7 24 5 12 3 8
x z
zx
z y
yz
y x
xy
; 13
−
= +
−
= +
−
= +
y x z zx
x z
y yz
z y x xy
2 2
1
; 14
= + +
= + +
= + +
4
1 1 1
3
1 1 1
2
1 1 1
y x z
x z y
z y x
;