1. Trang chủ
  2. » Giáo án - Bài giảng

BÀI tập rèn LUYỆN HÌNH học 12 c1,2

19 414 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 655,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.. Hình chiếu của S lên mặt phẳng ABCD là trung điểm H của AB, SC tạo với đáy một góc bằng 450.. Biết SO vuông góc

Trang 1

BÀI TẬP RÈN LUYỆN HÌNH HỌC 12_CHƯƠNG 1,2 Câu 1 Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.

A.

3

a 3

V

6

=

B

3

a 3 V

12

=

C

3

a 3 V

2

=

D

3

a 3 V

4

=

………

………

………

………

………

Câu 2 Hình đadiện tronghình vẽbên có bao nhiêu mặt? A 6 B 10 C 12 D 11 Câu 3 Cho hìnhnóncódiệntíchxungquanhbằng 2 3 aπ vàbánkínhđáybằnga.Tínhđộdàiđườngsinhlcủahìnhnónđãcho. A 5a l 2 = B l 2 2a= C 3a l 2 = D l 3a= ………

………

………

………

………

Câu 4.Tính thểtích V củakhối trụ ngoại tiếp hình lập phương có cạnh bằnga. A 3 a V 4 π = B 3 V= πa C 3 a V 6 π = D 3 a V 2 π = ………

………

………

………

………

Trang 2

Câu 5.Cho hìnhchóp S.ABCD có đáylàhình vuông cạnha, SA vuông góc với mặt đáy, SD tạovớimặtphẳng (SAB) mộtgócbằng30o.Tính thểtích V củakhối chópS.ABCD. A 3 6a V 18 = B 3 V= 3a C 3 6a V 3 = D 3 3a V 3 = ………

………

………

………

Câu 6.Cho hình chóp tứgiácđều S.ABCDcócạnh đáybằng3 2a , cạnh bênbằng5a Tính bánkínhRcủamặt cầu ngoại tiếp hình chóp S.ABCD. A R= 3a B R= 2a C 25a R 8 = D R 2a= ………

………

………

………

Câu 7.Cho khối tứ diện có thể tích bằng V Gọi V' là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số V ' V A V ' 1 V =2 B V ' 1 V =4 C V ' 2 V =3 D V ' 5 V =8 ………

………

………

………

Câu 8 Hình đa diện nào dưới đây không có tâm đối xứng ?

Trang 3

A. Tứ diện đều B. Bát diện đều.

C. Hình lập phương D. Lăng trụ lục giác đều

………

………

………

………

Câu 9 Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC A.V 3= B.V 4= C.V 6= D.V 5= ………

………

………

………

………

Câu 10 Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, cạnh AC 2 2= Biết AC’ tạo với mặt phẳng (ABC) một góc 600 và AC ' 4= Tính thể tích V của khối đa diện ABCB’C’ A. 8 V 3 = B. 16 V 3 = C. 8 3 V 3 = D. 16 3 V 3 = ………

………

………

………

Câu 11 Cho hình chóp S ABCD. có đáy ABCD là hình thoi tâm I có cạnh bằng a,

0 60

BAD=

Gọi H là trung điểm của IB và SH vuông góc với

( ABCD)

Góc giữa SC và

( ABCD)

bằng

0 45 Tính thể tích của khối chóp S AHCD.

Trang 4

A

3

35

32 a

B

3 39

24 a

C

3 39

32 a

D

3 35

24 a

………

………

………

………

………

Câu 12 Cho hình chóp S ABCD. có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB Tính tỉ số thể tích . S CDMN S CDAB V V là: A 1 4 B 5 8 C 3 8 D 1 2 ………

………

………

………

………

Câu 13 Cho hình chóp S ABC. có đáy ABC là tam giác vuông tại A,AB a= ,AC=2a , SC=3a SA vuông góc với đáy (ABC) Thể tích khối chóp S ABC. là A 3 3 12 a B 3 3 4 a C 3 5 3 a D 3 4 a ………

………

………

………

Câu 14 Cho hình chópS ABCD. có đáyABCD là hình thang vuông tại A và D; biết AB AD= =2a

,

CD a=

Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600 Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD) Tính thể tích của khối chópS ABCD.

A

3

3 5

8

a

B

3

3 15 5

a

C

3

3 15 8

a

D

3

3 5 5

a

Trang 5

………

………

………

Câu 15 Cho hình chóp S ABCD có đáy là hình vuông cạnh a, 17 2 a SD= Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB Gọi K là trung điểm của AD Tính khoảng cách giữa hai đường SD và HK theo a A 3 7 a B 3 5 a C 21 5 a D 3 5 a ………

………

………

………

Câu 16 Cho hình chóp S.ABCD có đáy là hình chữ nhật với 4 ; 2 AB= a AD= a Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy Góc giữa mặt phẳng (SBC) và (ABCD) bằng 450 Khi đó thể tích khối chóp S.ABCD là: A 3 4 3 a B 3 16 3 a C 3 8 3 a D 3 16a ………

………

………

………

Câu 17 Cho hàm số S.ABC Trên 3 cạnh SA, SB, SC lần lượt lấy 3 điểm A', B', C' sao cho

1 ' 2

SA = SA

;

SB = SB SC = SC

Gọi V và V' lần lượt là thể tích của các khối chóp S.ABCD và S'.A'B'C' Khi đó tỷ

số

'

V

V

là:

A

1

8

B

1 12

C

1 6

D

1 16

Trang 6

………

………

………

Câu 18 Cho lăng trụ tam giác ABC.A'B'C' có góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 0 60 , AB a= Khi đó thể tích của khối ABCC’B’ bằng A 3 3 a B 3 3 4 a C 3 3 4 a D 3 3 3 4 a ………

………

………

………

Câu 19 Cho khối lăng trụ đều ABC.A'B'C' và M là trng điểm của cạnh AB Mặt phẳng (B’C’M) chia khối lăng trụ thành hai phần Tính tỷ số thể tích của hai phần đó: A 7 5 B 6 5 C 1 4 D 3 8 ………

………

………

………

Câu 20 Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại B, 3 , 4 BA= a BC = a và AB vuông góc với mặt phẳng (SBC) Biết 2 3 SB= a và · 300 SBC= Thể tích khối chóp S.ABC là : A 3 3 2 a B 3 2a 3 C 3 3 a D 3 3 3 2 a ………

………

………

………

Câu 21 Cho hình chóp S.ABCD có đáy hình chữ nhật với cạnh

2 ,

AB= a AD a=

Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB, SC tạo với đáy một góc bằng 450 Khoảng cách từ điểm A với mặt phẳng (SCD) là:

A

3

3

a

B

6 4

a

C

6 3

a

D

3 6

a

Trang 7

………

………

………

Câu 22 Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân, · 0 , 120 AB AC a BAC= = = Mặt phẳng (AB'C') tạo với đáy góc 600 Thể tích lăng trụ ABC.A'B'C' bằng: A 3 3 2 a B 3 6 a C 3 a D 3 3 8 a ………

………

………

………Câu 23 Cho khối chóp tam giác S.ABC có (SBA) và (SBC) cùng vuông góc với (ABC), đáy ABC là tam giác đều cạnh a, SC bằng 7 a Đường cao của khối chóp SABC bằng A a B 2a 2 C a 6 D a 5 ………

………

………

………

Câu 24 Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy là tam giác vuông cân tại A cạnh AB bằng 3 a , góc giữa A'C và (ABC) bằng 450 Khi đó đường cao của lăng trụ bằng: A a B 3 a C a 2 D 3a ………

………

………

……… Câu 25 Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, SA vuông góc với đáy, AC=2a 2 , góc giữa SC và mặt phẳng đáy bằng 0 60 Thể tích khối chóp S.ABC là A 3 4 6 3 a B 3 3 a C 3 4 3 a D 3 8 6 3 a ………

………

Trang 8

………

Câu 26 Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a Khi đó thể tích khối chóp BCC’D’ bằng A 3 3 a B 3 6 a C 3 2 3 a D 3 2 a ………

………

………

………

Câu 27 Cho tứ diện ABCD Gọi M, N lần lượt là trung điểm của AB, AC, lấy điểm P thuộc AD sao cho 2 AP= PD Khi đó tỉ số thể tích AMNP ABCD V V bằng A 1 12 B 1 3 C 1 6 D 3 8 ………

………

………

………

Câu 28 Cho hình chóp S.ABCD có hình chiếu vuông góc của S trên mặt đáy ABCD là điểm I thuộc AD sao cho 7 2 , 2 a AI = ID SB= , ABCD là hình vuông có cạnh bằng a Khi đó thể tích của khối chóp S.ABCD bằng: A 3 2 6 a B 3 11 12 a C 3 11 18 a D 3 2 18 a ………

………

………

……… Câu 29 Cho hình chóp S.ABC có đáy là ∆ABC

vuông cân ở B, 2,

AC a= SA a=

( )

SAABC

Gọi G là trọng tâm của ∆SBC

, một mặt phẳng

( )α

đi qua AG và song song vsơi BC cắt SC, SB lần lượt tại M, N Thể tích khối chóp S.AMN bằng

Trang 9

A

3

4

27

a

B

3 4 9

a

C

3 4 27

a

D

3 2 27

a

………

………

………

………

Câu 30 Hình chop SACB có SA vuông góc với mặt phẳng đáy, SA=a, AC a= 2 , AB=3a Gọi M,N là hình chiếu vuông góc của A lên các cạnh SB và SC Đặt ; SAMN SABC V k V = , khi đó giá trị của k là A 1 30 B 1 3 C 1 30 D 1 2 ………

………

………

……… Câu 31 Cho hình lăng trụ ABCA’B’C’ có đáy tam giác đều cạnh a Hình chiếu của C trên mặt phẳng (A’B’C’) là trung điểm của B’C, góc giữa CC’ và mặt phẳng đáy bằng 450 Khi đó thể tích khối lăng trụ là A 3 3 24 a B 3 3 12 a C 3 3 8 a D 3 3 4 a ………

………

………

………

Câu 32 Cho hình chóp SABCD có đáy là hình thoi cạnh a, BAD = 450 Cạnh bên SD vuông góc với mặt phẳng đáy, SD a= 2 Thể tích khối chóp SABCD là A 3 a B 3 2 a C 3 3 a D 3 2a ………

………

………

………

Trang 10

Câu 33 Cho hình lăng trụ ABCA B C' ' ' có thể tích bằng 48cm3 M, N, P theo thứ tự là trung điểm các cạnh CC’, BC và B’C’, khi đó thể tích của khối chóp A MNP' là

16 3

………

………

………

………

Câu 34 Biết thể tích của khối lăng trụ ABC.A'B'C' bằng V Thể tích tứ diện A'ABC' là: A 4 V B 2V C 2 V D 3 V ………

………

………

………

Câu 35 Cho hình lăng trụ ABC.A’B’C’ vì M là trung điểm của CC’ Gọi khối đa diện (H) là phần còn lại của khối lăng trụ ABC.A’B’C’ sau khi cắt bỏ đi khối chóp M.ABC Tỷ số thể tích của (H) và khối chóp M.ABC là: A 1 6 B 6 C 1 5 D.5 ………

………

………

………

Câu 36 Cho hình chóp S.ABC có tam giác ABC vuông cân tại A, BC a= , tam giác SBC đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC) Tính thể tích khối chóp S.ABC A 3 3 24 a B 3 3a C 3 3 4 a D 3 6 8 a ………

………

………

……… Câu 37 Cho hình chóp S.ABCD có ABCD là hình thoi tâm O,

Trang 11

5; 4 , 2 2

AB a= AC= a SO= a

Gọi M là trung điểm SC Biết SO vuông góc với mặt phẳng (ABCD), tính thể tích khối chóp M.OBC

A

3

2 2a

B

3

2a

C

3 2 3

a

D

3

4a

………

………

………

………

Câu 38 Khối lăng trụ ABC.A’B’C’ có đáy là tam giác đều, a là độ dài cạnh đáy Góc giữa cạnh bên và đáy là 0 30 Hình chiếu vuông góc cảu A’ trên (ABC) trùng với trung điểm BC Tính thể tích khối lăng trụ đã cho là: A 3 3 3 a B 3 3 8 a C 3 3 12 a D 3 3 4 a ………

………

………

………

Câu 39 Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB Mặt bên (AA C C' ' ) tạo với đáy một góc bằng 450 Thể tích khối lăng trụ bằng: A 3 3 32 a B 3 3 16 a C 3 3 4 a D 3 3 8 a ………

………

………

………

Câu 40 Hình chóp S.ABCcó tam giác ABC đều có diện tích bằng 1 , SA hợp với đáy

(ABC) một góc 600 Biết khoảng cách từ � tới mặt phẳng (ABC) là 3 Tính thể tích khối chóp

S.ABC

Trang 12

A

3

8

3 2

D 3

………

………

………

CHƯƠNG 2

Câu 1 Ba đoạn thẳng SA, SB, SC đôi một vuông góc với nhau tạo thành một tứ diện S.ABC với

SA a SB= = a SC= a

Bán kính mặt cầu ngoại tiếp hình tứ diện đó:

A

6

2

a

B

3 6

a

C

14 2

a

D

14 6

a

………

………

………

Câu 2 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy

6

SC a=

Khi tam giác SAC quay quanh cạnh SA thì đường gấp khúc SAC tạo thành một hình nón tròn xoay Thể tích của khối nón tròn xoay đó là:

A

3

4

3

a

π

B

3 2 6

a π

C

3 3 3

a

π

D

3 3 6

a

π

………

………

………

Câu 3 Cho hình chóp S.ABCD có chiều cao SA a=

, ABCD là hình thang vuông tại A và B trong đó

AB BC a= =

AD 2a=

Gọi E là trung điểm đoạn AD, tính theo a bán kính của khối cầu ngoại tiếp khối chóp S.CDE

A

11

2

a

5 3

a

………

………

………

Trang 13

Câu 4 Một hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a Gọi O là giao điểm AC

và BD Khi tam giác SOC quay quanh cạnh SO thì đường gấp khúc SOC tạo thành một hình nón tròn xoay Diện tích xung quanh của hình nón tròn xoay đó là:

A

2 2

a

π

B

2

a

π

C

2

2 aπ

D

2 2

a

π

………

………

………

Câu 5 Một hình trụ ngoại tiếp một hình lập phương cạnh a Thể tích của khối trụ đó là:

A

3

1

2aπ

B

3 1

4aπ

C

3 1

3a π

D

3

aπ

………

………

………

Câu 6 Thiết diện qua trục của hình nón tròn xoay là một tam giác đều có cạnh bằng a.Thể tích của khối nón

bằng:

A

3

3

8

a

π

B

3

2 3 9

a

π

C

3 3 24

a

π

D

3

3 aπ

………

………

………

Câu 7 Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a Bán kính của mặt cầu ngoại tiếp

hình chóp nói trên bằng:

A

2 4

a

R=

B

2 2

a

R=

C

2 3

a

R=

D

3 2

a

R=

………

………

………

Câu 8 Một kim tự tháp ở Ai Cập được xây dựng vào khoảng 2500 trước Công nguyên Kim tự tháp này là

một khối chóp tứ giác đều có chiều cao 150 m, cạnh đáy dài 220 m Diện tích xung quanh của kim tự tháp này là:

A 2200 346 m( )2

B 4400 346 m( )2

C 2420000 m( )3

D 1100 346 m( )2

Trang 14

………

………

Câu 9 Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh

bằng 3a Diện tích toàn phần của khối trụ là:

A

2 3

tp

S =a π

B

2 13 6

tp

a

S = π

C

2 27 2

tp

a

S = π

D

2 3 2

tp

a

S = π

………

………

………

Câu 10 Cho hình trụ có bán kính đáy 3 cm, đường cao 4cm, diện tích xung quanh của hình trụ này là:

A

( )2

20π cm

B

( )2

24π cm

C

( )2

26π cm

D

( )2

22π cm

………

………

………

Câu 11 Một hình nón có góc ở đỉnh bằng

0 60 , đường sinh bằng 2a, diện tích xung quanh của hình nón là:

A

2 4

xq

S = πa

B

2 2

xq

S = πa

C

2

xq

Sa

D

2 3

xq

S = πa

………

………

………

Câu 12 Một khối trụ có thể tích là 20 (đvtt) Nếu tăng bán kính đáy lên 2 lần và giữ nguyên chiều cao của

khối trụ thì thể tích của khối trụ mới là:

A 80 (đvtt) B 40 (đvtt) C 60 (đvtt) D 400 (đvtt)

………

………

………

Câu 13 Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy góc 60o Hình nón có đỉnh S, đáy là đường tròn nội tiếp tứ giác ABCD có diện tích xung quanh là

A

2 2

S = πa

B

2 7 4

a

S = π

C

2

Sa

D

2 2

a

S

Trang 15

………

………

Câu 14 Một hình nón có độ dài đường sinh bằng 2a và mặt phẳng qua trục cắt hình nón theo thiết diện là

tam giác vuông Tính thể tích V của khối nón

A

3

2 2

3

a

B

3 3 3

a

V = π

C

3

2 3 3

a

D

3 2 3

a

V = π

………

………

………

Câu 15 Cho tam giác ABO vuông tại O, có góc

0

30 ,

BAO= AB a=

Quay tam giác ABO quanh trục AO ta được một hình nón có diện tích xung quanh bằng:

A

2

a

π

B

2

2 aπ

C

2 2

a

π

D

2 4

a

π

………

………

………

Câu 16 Một hình nón tròn xoay có đường sinh bằng đường kính đáy Diện tích đáy của hình nón bằng

9π Khi đó chiều cao h của hình nón bằng:

A

3

h=

B

3 3

h=

C

3 2

h=

D

3 3

h=

………

………

………

Câu 17 Cho hình nón có chiều cao ; bán kính đáy � và độ dài đường sinh là l Tìm khẳng định đúng:

A

2 1

3

V = r h

B

xq

Srh

C

( )

tp

Sr r l+

D

2

xq

S = πrh

………

………

………

Trang 16

Câu 18 Cho hình lập phương ABCD A B C D ' ' ' ' cạnh A Gọi O là tâm của hình vuông ABCD Khi đó thể

tích của khối nón có đỉnh là O và đáy là hình tròn nội tiếp hình vuông A B C D' ' ' ' bằng:

A

3

1

a

3 1

a

(đvtt) C

3 1

12πa

(đvtt) D

3 1

a

(đvtt)

………

………

………

Câu 19 Cho tứ diện ABCD có

ADABC

BDBC

Khi quay tất cả các cạnh của tứ diện đó quanh cạnh AB có bao nhiêu hình nón được tạo thành

………

………

………

Câu 20 Một hình trụ có hai đáy là hai hình tròn

(O r; )

(O r'; )

Khoảng cách giữa hai đáy là

OO =r

Một hình nón có đỉnh là O’ và có đáy là hình tròn

(O r; )

Mặt xung quanh của hình nón chia khối trụ thành

2 phần Gọi

1

V

là thể tích phần bên ngoài khối nón,

2

V

là phần thể tích bên trong khối nón Khi đó

1 2

V V

bằng:

A

1

2

B

1 3

………

………

………

Câu 21 Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng 2 Tính

diện tích xung quanh của hình nón

A 2π 2

đvdt B

đvdt D

đvdt

………

………

………

Trang 17

Câu 22 Một hình trụ có bán kính đáy là 2 cm và có thiết diện qua trục là một hình vuông Tính thể tích cảu

khối trụ

A

3

4 cmπ

B

3

8 cmπ

C

3

16 cmπ

D

3

32 cmπ

………

………

………

Câu 23 Hình chóp S ABC. có đáy ABC là tam giác vuông cân tại A và AB AC SB SC a= = = =

,

(SBC) (⊥ ABC)

Tính bán kính của mặt cầu ngoại tiếp hình chóp?

A

2

3

a

B 2

a

2 2

a

………

………

………

Câu 24 Cho hình trụ có bán kính đáy là R a=

, mặt phẳng qua trục và cắt hình trụ theo một thiết diện có diện tích bằng

2

6a

Diện tích xung quanh của hình trụ và thể tích của khối trụ là

A

a ;3πa

B

a ;6πa

C

a ;9πa

D

a ;3πa

………

………

………

Câu 25 Một hình nón tròn xoay có độ dài đường sinh bằng độ dài đường kính đáy, diện tích đáy của hình

nón bằng 4π

Tính chiều cao h của hình nón

A

3

h=

B

2 3

h=

C

3 2

h=

D

3 3

h=

………

………

………

Câu 26 Cho tam giác ABC vuông cân tại A , cạnh AB=4a

Quay tam giác này xung quanh cạnh AB Tính thể tích của khối nón được tạo thành

Ngày đăng: 06/06/2017, 11:34

TỪ KHÓA LIÊN QUAN

w