1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tinh thể học tia x

10 344 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 10,37 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tinh thể học tia XBách khoa toàn thư mở Wikipedia Bước tới: menu, tìm kiếm Workflow for solving the structure of a molecule by X-ray crystallography Tinh thể học tia X là ngành khoa học

Trang 1

Tinh thể học tia X

Bách khoa toàn thư mở Wikipedia

Bước tới: menu, tìm kiếm

Workflow for solving the structure of a molecule by X-ray crystallography

Tinh thể học tia X là ngành khoa học xác định sự sắp xếp của các nguyên tử bên trong một tinh thể dựa vào dữ liệu về sự phân tán của các tia X sau khi chiếu vào các electron của tinh thể Sau khi xây dựng được hình ảnh 3 chiều của mật độ các electron bên trong tinh thể, vị trí của nguyên tử tính trung bình, các liên kết hóa học có thể được thu thập

Bước quan trọng trong tinh thể học tia X là sự nhiễu xạ tia X từ tinh thể Một tinh thể là một vật rắn với các nguyên tử bên trong có trật tự cố định và được lặp đi lặp lại dọc theo 3 hướng chính

gọi là vector cơ sở hay vector lưới (bais hay lattice) Nhiều chất có thể chuyển về dạng tinh thể như

muối, kim loại, khoáng chất, chất bán dẫn, cũng như các phân tử vô cơ, hữu cơ hay sinh học khác

Sau khi thu được dạng tinh thể của một chất, nó sẽ được treo lên máy đo góc (goniometer)

và được bắn tia X vào, tạo ra các mẫu nhiễu xạ của các điểm gọi là điểm phản xạ Tiếp, tinh thể sẽ được xoay tròn từ từ (theo một độ dời góc nhất định) và cứ mỗi lần xoay ta lại thu thập một mẫu nhiễu xạ mới Tập hợp các ảnh 2D này sẽ được chuyển thành một mô hình 3D về mật độ của các electron bên trong tinh thể nhờ phương pháp toán học biến đổi Fourier và dữ liệu hóa học của mẫu (tức là ta đã biết thành phần hóa học của chất) Từ đó, có thể suy ra vị trí của các nhân nguyên tử mật độ electron và dữ liệu hóa học

Mục lục

[ẩn]

 1 Tổng quan về nhiễu xạ tia X đơn tinh thể

o 1.1 Thủ tục

o 1.2 Hạn chế

 2 Lịch sử

Trang 2

o 2.1 Sơ lược về tinh thể và tia X

o 2.2 Phân tích tia X của các tinh thể

o 2.3 Phát triển từ 1912 đến 1920

 3 Đóng góp trong hóa học và khoa học vật liệu

 4 Phương pháp

o 4.1 Tinh thể hóa

o 4.2 Thu thập dữ liệu

 4.2.1 Treo tinh thể lên

 4.2.2 Nguồn tia X

 4.2.3 Ghi lại các nhiễu xạ

 5 Xem thêm

 6 Chú thích

 7 Tài liệu

o 7.1 Bảng quốc tế về tinh thể học

o 7.2 Tập hợp các bài báo

o 7.3 Sách

o 7.4 Lịch sử

 8 Liên kết ngoài

o 8.1 Hướng dẫn

o 8.2 CSDL chính

o 8.3 CSDL dẫn xuất

o 8.4 Kiểm tra cấu trúc

 9 Thư viện ảnh

[sửa] Tổng quan về nhiễu xạ tia X đơn tinh thể

Phương pháp lâu đời nhất và chính xác nhất của tinh thể học tia X là nhiễu xạ tia X đơn tinh thể, trong đó chùm tia X bị bản hồi từ các mặt phẳng có khoảng cách đều nhau của một đơn tinh thể, tạo ra một mẫu nhiễu xạ gồm các điểm gọi là nhiễu xạ Mỗi nhiễu xạ tương ứng với một tập các mặt phẳng có khoảng cách đều nhau bên trong tinh thể Mật độ các electron bên trong tinh thể được xác định từ vị trí và độ sáng của các nhiễu xạ khác nhau quan sát được khi tinh thể từ từ xoay quanh chùm tia X; mật độ này, cùng với dữ liệu bổ sung (về thành phần hóa học), cho phép ta xác định vị trí của các nguyên tử bên trong tinh thể Nó có thể xác định lực liên kết hóa học trung bình giữa các nguyên tử và góc giữa chúng trong khoảng vài ngàn Ångström và vài chục độ

[ sửa ] Thủ tục

Kĩ thuật nhiễu xạ tia X đơn tinh thể có 3 bước chính Đầu tiên - khó nhất - là thu thập một tinh thể tốt Tinh thể phải đủ lớn (thường là lớn hơn 100 micron ở mọi chiều), không có tạp chất và

có cấu trúc ổn định, không bị nứt nẻ

Bước hai, đặt tinh thể vào trong đường đi của chùm tia X cực mạnh, thường có bước sóng

đơn (monochromatic X-rays), để tạo ra các mẫu nhiễu sắc Tinh thể từ từ xoay và dữ liệu được thu

thập lại Mỗi ảnh chứa hàng chục ngàn điểm nhiễu xạ với các cường độ khác nhau

Bước ba, dùng kĩ thuật tính toán và dữ liệu hóa học bổ sung để đưa ra mô hình về sự sắp xếp các nguyên tử bên trong tinh thể Kết quả có thể được lưu trữ ở các CSDL công cộng

[ sửa ] Hạn chế

Trang 3

Xem thêm: Độ phân giải (mật độ electron)

[sửa] Lịch sử

[ sửa ] Sơ lược về tinh thể và tia X

Vẽ một hình vuông (Figure A, ở trên) và hình lục giác (Figure B, ở dưới) packing from Kepler's work, Strena seu de Nive Sexangula

Các tinh thể từ lâu đã nổi tiếng về tính sắp xếp theo qui luật và đối xứng, nhưng chưa được nghiên cứu một cách khoa học mãi cho tới thế kỉ 17 Johannes Kepler đã đưa ra giả thuyết trong

cuốn Strena seu de Nive Sexangula (1611) rằng tính đối xứng lục giác của tinh thể bông tuyết là do

sự đóng gói theo qui luật của các phân tử nước hình cầu[1]

Được hiển thị bằng tinh thể học tia X, đối xứng lục giác của bông tuyết là do sự sắp xếp theo khối bốn mặt của liên kết hydro quanh phân tử nước Các phân tử nước tạo thành một lưới kim cương, có tính đối xứng lục giác khi được nhìn dọc theo trục chính

Nicolas Steno (1669) là người đầu tiên thử nghiệm tính đối xứng của tinh thể, ông đã cho thấy rằng các góc giữa 2 bề mặt tinh thể là luôn như nhau[2] và tiếp đến là René Just Haüy (1784), người đã khám phá ra rằng mỗi mặt của một tinh thể có thể được mô tả bởi 3 số nguyên nhỏ, gọi là chỉ số Miller Điều này dẫn Haüy đến quan điểm đúng đắn là các tinh thể có cấu trúc mảng 3 chiều không thay đổi (lưới Bravais) các nguyên tử và phân tử; một phân tử tế bào đơn vị được lặp đi vô hạn định dọc theo 3 trục cơ bản đó (các trục này không nhất thiết là vuông góc nhau) Vào thế kỉ 19, tổng hợp mọi đối xứng có thể có của một tinh thể đã được đưa ra bởi Johann Hessel[3] , Auguste Bravais[4] , Yevgraf Fyodorov[5] , Arthur Schönflies[6] và sau này là William Barlow

Trang 4

Tinh thể học tia X cho thấy sự sắp xếp của một phân tử nước trong đá, tiết lộ cho thấy liên kết hydro tạo ra đối xứng lục giác

Tia X được khám phá ra bởi Wilhelm Conrad Röntgen năm 1895 Nó là sóng điện từ, hay một dạng khác của ánh sáng

[ sửa ] Phân tích tia X của các tinh thể

Chùm tia đi vào (từ phía trên bên trái) gây ra cho mỗi phát tán tỏa ra lại một phần nhỏ năng

lượng dưới dạng sóng cầu Nếu các phát tán được sắp xếp đối xứng với với khoảng phân cách d, thì những sóng cầu này sẽ đồng bộ chỉ theo hướng mà sự chênh lệch chiều dài đường đi là 2 d sin θ

bằng với gấp số nguyên lần bước sóng λ Trong trường hợp đó, một phần của chùm tia đi vào bị làm lệch một góc 2θ, tạo ra một điểm nhiễu xạ trong mẫu nhiễu xạ

Các tinh thể là các mảng cố định của các nguyên tử và tia X có thể được xem là các sóng điện từ Các nguyên tử làm phân tán tia X, chủ yếu dựa vào các electron của nguyên tử; nó cũng giống như sóng biển đánh vào một ngọn hải đăng có các gờ đá bao quanh thì tạo ra một làn sóng nhỏ khác tỏa ra theo mọi hướng từ ngọn hải đăng đó, thì tia X đánh vào một electron bao quanh

nguyên tử cũng tạo ra một sóng cầu tỏa ra từ electron đó Hiện tượng này gọi là tán xạ (scatterer).

Một mảng không thay đổi các tán xạ tạo ra một mảng cố định các sóng cầu Mặc dù các sóng này triệt tiêu nhau theo hầu hết các hướng, chúng vẫn cộng lẫn nhau theo một vài hướng, tuân theo định luật Bragg

2dsinθ = nλ

với n là số nguyên Những hướng chọn lựa sẽ xuất hiện là các điểm trên mẫu nhiễu xạ, hay còn gọi là sự phản xạ (reflection).

[ sửa ] Phát triển từ 1912 đến 1920

Trang 5

Mặc dù kim cương (trên bên trái) và than chì (trên bên phải) là giống nhau về thành phần hóa học — đều hoàn toàn carbon — tinh thể học tia X cho thấy sự sắp xếp các nguyên tử (bên dưới), dẫn đến sự khác nhau về tính chất giữa chúng Trong kim cương, các nguyên tử cácbon được sắp xếp theo khối tứ diện và được giữa với nhau bằng liên kết cộng hóa trị đơn, tạo cho nó kết nối mạnh theo mọi hướng Ngược lại, than chì tạo bơi các lớp chồng lên nhau, trong đó nguyên tử cácbon liên kết lục giác bằng các liên kết đơn và đội, không có liên kết cộng hóa trị giữa các lớp

Sau nghiên cứu tiên phong của von Laue, lĩnh vực này phát triển nhanh chóng, nổi tiếng nhất là hai nhà vật lý William Lawrence Bragg và cha của ông William Henry Bragg Năm

1912-1913, Bragg trẻ đã phát triển ra định luật Bragg, liên kết tán xạ quan sát được với sự phản xạ từ các mặt phẳng có khoảng cách đều nhau bên trong tinh thể[7]

[sửa] Đóng góp trong hóa học và khoa học vật liệu

[sửa] Phương pháp

[ sửa ] Tinh thể hóa

Tập tin:Protein crystal.jpg

Một tinh thể protein được nhìn qua kính hiển vi Tinh thể dùng trong tinh thể hóa tia X thường có

bề ngang nhỏ hơn 1 millimeter

Xem thêm thông tin tại: Tinh thể hóa

[ sửa ] Thu thập dữ liệu

[ sửa ] Treo tinh thể lên

Trang 6

Minh hoạc cho thấy chuyển động của máy đo góc kết kappa 4 chu kì Việc quay quanh một trong 4 góc bất kì φ, κ, ω và 2θ giúp đưa rõ tinh thể ra trước chùm tia X (màu cam), và đổi hướng cho phép nhiều không gian tương hỗ được quan sát Cuối cùng, bộ nhận dạng (màu tía với màn hình đen) có thể điều chỉnh gần hoặc xa tinh thể, cho phép có thể chỉnh độ phân giải cao (nếu gần) hoặc nhìn thấy tốt hơn các đỉnh Bragg (nếu ở xa)

Vì cả tinh thể và chùm tia là rất nhỏ, nên tinh thể phải đặt ở giữa chùm tia với độ chính xác trong khoảng 25 microns, nhờ sự hỗ trợ của một camera được hội tụ ở tinh thể Loại đo góc kế phổ dụng nhất là "kappa goniometer", loại thường có 3 góc xoay: góc ω , xoay quanh trục gần như vuông góc với chùm tia; góc κ , quay quanh trục vào khoảng 50° so với trục ω ; và góc φ quay

quanh trục mao dẫn (loop/capillary axis) Khi góc κ là zero, thì các trục ω và φ trùng khớp.

[ sửa ] Nguồn tia X

Xem thêm thông tin tại: Nhiễu xạ kế và Xinchrotron

Nguồn tia X sáng nhất và hữu ích nhất là Xincrotron; độ sáng cao cho phép tạo ra độ phân giải cao Nó cũng dễ điều chỉnh bước sóng của tia xạ Các máy Xincrotron là tài sản quốc gia, mỗi thiết bị tương ứng với một dòng tia nơi dữ liệu được thu thập liên tục

Nhiễu xạ kế

Các nguồn tia X nhỏ hơn và yếu hơn thì thường được dùng trong các phòng TN để kiểm tra chát lượng tinh thể trước khi đem đến các máy Xinchrotron

[ sửa ] Ghi lại các nhiễu xạ

Trang 7

Một mẫu nhiễu xạ tia X của một enzyme được tinh thể hóa Mẫu tạo bởi các chấm đen (gọi

là nhiễu xạ) có thể được dùng để xây dựng lại cấu trúc của enzyme đó

Khi một tinh thể được treo lên máy đo góc và được chiếu vào bằng chùm tia X cực mạnh ở phía trước, nó sẽ làm phát tán chùm tia X đó và tạo ra mẫu các điểm đen hay là nhiễu xạ mà có thể được quan sát thông qua màn hình nằm phía sau tinh thể Cường độ mạnh yếu khác nhau của tia phản xạ có thể cho ta biết được sự sắp xếp của các phân tử bên trong tinh thể ở mức nguyên tử Cường độ này được đo đạc dựa vào phim nhiếp ảnh, một bộ nhận dạng diện tích (area detector) hay

thiết bị cảm ứng hình cảnh charge-coupled device (CCD) Đỉnh có góc nhỏ sẽ tương ứng với dữ

liệu có độ phân giải thấp, trong khi đỉnh (peak) có góc cao sẽ cho ra dữ liệu có độ phân giải cao.

Một hình ảnh các điểm (spot) thì không đủ để xây dựng lại toàn bộ cấu trúc tinh thể; nó chỉ

là một lát nhỏ trong toàn bộ biến đổi Fourier Để thu thập mọi thông tin cần thiết, tinh thể phải được xoay từng bước cho đến hết một góc 180°, với mỗi ảnh sẽ được lưu lại tại mỗi bước Tuy nhiên, vì tinh thể có tính đối xứng cao, nên có thể dùng một góc xoay nhỏ hơn, như 90° hay 45° Trục xoay

cũng nên được đổi ít nhất 1 lần, để tránh việc phát triển các điểm mù (blind spot) Thông thừong

nên lắc cho tinh thể dịch đôi chút (cỡ 0.5-2°)

[sửa] Xem thêm

 Xác định cấu trúc

 Nhiễu xạ neutron

 Nhiễu xạ electron

 Phân tán tia X góc rộng (Wide angle X-ray scattering - WAXS)

 Phân tán tia X góc hẹp (Small angle X-ray scattering - SAXS)

 Lưới Bravais

 Nhóm điểm tinh thể

[sửa] Chú thích

1 ^ Kepler, J (1611) Strena seu de Nive Sexangula, Frankfurt: G Tampach

2 ^ Steno, N (1669) De solido intra solidum naturaliter contento dissertationis prodromus, Florentiae

3 ^ Hessel, JFC (1831) Kristallometrie oder Kristallonomie und Kristallographie, Leipzig

4 ^ Bravais, Auguste (1850) “Mémoire sur les systèmes formés par des points distribués

regulièrement sur un plan ou dans l'espace” J l'Ecole Polytech 19

5 ^ I I Shafranovskii and N V Belov (1962) “E S Fedorov” 50 Years of X-Ray

Diffraction, ed Paul Ewald (Springer): pp 351-353 ISBN 9027790299 http://www.iucr.org/iucr-top/publ/50YearsOfXrayDiffraction/fedorov.pdf

6 ^ Schönflies, A (1891) Kristallsysteme und Kristallstruktur, Leipzig

Trang 8

7 ^ Bragg WL (1912) “The Specular Reflexion of X-rays” Nature 90: 410 doi:10.1038/090410b0

Bragg WL (1913) “The Diffraction of Short Electromanetic Waves by a Crystal”

Proceedings of the Cambridge Philosophical Society 17: 43–57.

Bragg WL (1914) “Die Reflexion der Röntgenstrahlen” Jahrbuch der Radioaktivität und

Elektronik 11: 350

[sửa] Tài liệu

[ sửa ] Bảng quốc tế về tinh thể học

(2002) International Tables for Crystallography Volume A, Space-group Symmetry, 5th

edition, ed Theo Hahn, Dordrecht: Kluwer Academic Publishers, for the International Union of Crystallography ISBN 0-7923-6590-9

(2001) eds Michael G Rossmann and Eddy Arnold International Tables for

Crystallography Volume F, Crystallography of biological molecules, Dordrecht: Kluwer Academic Publishers, for the International Union of Crystallography ISBN 0-7923-6857-6

(1996) International Tables for Crystallography Brief Teaching Edition of Volume A,

Space-group Symmetry, 4th revised and enlarged edition, ed Theo Hahn, Dordrecht: Kluwer Academic Publishers, for the International Union of Crystallography ISBN 0-7923-4252-6

[ sửa ] Tập hợp các bài báo

(1997) Macromolecular Crystallography, Part A (Methods in Enzymology, v 276), edited

by CW Carter, Jr and RM Sweet, San Diego: Academic Press ISBN 0-12-182177-3

(1997) Macromolecular Crystallography, Part B (Methods in Enzymology, v 277), edited

by CW Carter, Jr and RM Sweet, San Diego: Academic Press ISBN 0-12-182178-1

(1999) Crystallization of Nucleic Acids and Proteins: A Practical Approach, 2nd edition,

edited by A Ducruix and R Giegé, Oxford: Oxford University Press ISBN 0-19-963678-8

[ sửa ] Sách

Blow, D (2002) Outline of Crystallography for Biologists, Oxford: Oxford University

Press ISBN 0-19-851051-9

Clegg, W (1998) Crystal Structure Determination (Oxford Chemistry Primer), Oxford:

Oxford University Press ISBN 0-19-855-901-1

Drenth, J (1999) Principles of Protein X-Ray Crystallography, New York: Springer-Verlag.

ISBN 0-387-98587-5

 Giacovazzo, C; Monaco HL, Viterbo D, Scordari F, Gilli G, Zanotti G, and Catti M (1992)

Fundamentals of Crystallography, Oxford: Oxford University Press ISBN 0-19-855578-4

Glusker, JP; Lewis M, Rossi M (1994) Crystal Structure Analysis for Chemists and

Biologists, New York: VCH Publishers ISBN 0-471-18543-4

Massa, W (2004) Crystal Structure Determination, Berlin: Springer ISBN 3540206442

McPherson, A (1999) Crystallization of Biological Macromolecules, Cold Spring Harbor,

NY: Cold Spring Harbor Laboratory Press ISBN 0-87969-617-6

McPherson, A (2003) Introduction to Macromolecular Crystallography, John Wiley &

Sons ISBN 0-471-25122-4

McRee, DE (1993) Practical Protein Crystallography, San Diego: Academic Press ISBN

0-12-486050-8

Rhodes, G (2000) Crystallography Made Crystal Clear, San Diego: Academic Press ISBN

0-12-587072-8., PDF copy of select chapters

Trang 9

Zachariasen, WH (1945) Theory of X-ray Diffraction in Crystals, New York: Dover

Publications Bản mẫu:LCCN

[ sửa ] Lịch sử

Friedrich, W (1922) “Die Geschichte der Auffindung der Röntgenstrahlinterferenzen” Die

Naturwissenschaften 10

 Lonsdale, K (1949) Crystals and X-rays, New York: D van Nostrand

 Bragg, William Lawrence , D C Phillips and H Lipson (1992) The Development of X-ray

Analysis, New York: Dover ISBN 0-486-67316-2

 Ewald PP , editor, and numerous crystallographers (1962) Fifty Years of X-ray Diffraction, Utrecht: published for the International Union of Crystallography by A Oosthoek's Uitgeversmaatschappij N.V

 Ewald, P P , editor 50 Years of X-Ray Diffraction (Reprinted in pdf format for the IUCr XVIII Congress, Glasgow, Scotland, Copyright © 1962, 1999 International Union of Crystallography)

 Bijvoet JM , Burgers WG, Hägg G, eds (1969) Early Papers on Diffraction of X-rays by

Crystals (Volume I), Utrecht: published for the International Union of Crystallography by A Oosthoek's Uitgeversmaatschappij N.V

 Bijvoet JM , Burgers WG, Hägg G, eds (1972) Early Papers on Diffraction of X-rays by

Crystals (Volume II), Utrecht: published for the International Union of Crystallography by

A Oosthoek's Uitgeversmaatschappij N.V

[sửa] Liên kết ngoài

[ sửa ] Hướng dẫn

 Simple, non technical introduction

 "Small Molecule Crystalization" (PDF) at Illinois Institute of Technology website

 International Union of Crystallography

 Crystallography 101

 Interactive structure factor tutorial

 Book of Fourier , about a technique which is used in X-ray crystallography

 Lecture notes on X-ray crystallography and structure determination

[ sửa ] CSDL chính

 Protein Data Bank (PDB)

 Nucleic Acid Databank (NDB)

 Cambridge Structural Database (CSD)

 Inorganic Crystal Structure Database (ICSD)

 Biological Macromolecule Crystallization Database (BMCD)

[ sửa ] CSDL dẫn xuất

 PDBsum

 Proteopeida - the collaborative, 3D encyclopedia of proteins and other molecules

 RNABase

 HIC-Up database of PDB ligands

 Structural Classification of Proteins database

 CATH Protein Structure Classification

Trang 10

 List of transmembrane proteins with known 3D structure

 Orientations of Proteins in Membranes database

[ sửa ] Kiểm tra cấu trúc

 WHAT-IF structural validation suite

 Biotech structural validation suite (formerly ProCheck)

 MolProbity structural validation suite

 ProSA-web

 NQ-Flipper (check for unfavorable rotamers of Asn and Gln residues)

 DALI server (identifies proteins similar to a given protein)

Bản mẫu:Protein structure determination

[sửa] Thư viện ảnh

Lấy từ “http://vi.wikipedia.org/wiki/Tinh_th%E1%BB%83_h%E1%BB%8Dc_tia_X”

Thể loại: Tinh thể học | Nhiễu xạ | Tia X | Cấu trúc protein | Phương pháp protein | Kĩ thuật liên quan Xinchrotron

Ngày đăng: 03/04/2017, 23:14

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w