1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập trắc nghiệm Lũy thừa 20162017

11 414 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 5,69 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Dd tiri hlrn so c6 rn6t tAm doi xfrng s... Tim monh dd dring trong c6c menh dd sau: A.. Tim mOnh d0 dfing trong c6c m0nh cld sarr: x losx A.

Trang 1

Cflu1: Tinh: K =

A L2

Cflu2: Tinh: K =

A 10

C*u3: Tinh: K =

(A)

-\_/ 13

LU? T}IUA L

[ 1)-o'" It\-:

l- | +l- I

\16' \,8/

B 16

2'.2-t +5-3.5*

, ta duoc:

c 18

, ta duo c 1o-3 : 1o-2 -(o,zs)o

,/ 1\'

2:4-2 +(3-' )' I 1 I

\ /lol \),/ t-' ,.taduoc

(r)-'

.l-l

\2)

5-'.25'+ (0, z)o

I

B.- -J

5 c.-a

3

2

CAu4: Tfnh: K = (0,04)-''' - (0,125)-l \/ , ta duo c

A.90 ( 8J121 C 120

,Y 6 4

CAuS: Tinh: K = 87 : 3i - 31.3i ra duoc

7_52-5"

Cflu9: Cho f(x) = V;.V; Khi d6 f(g.S?) bang: \'

A o,1 '!:P G/,3 D o,4

cflulo: Cho fix) = J*.}',

Khid6 fr!'l bdne:

il

10 rb) \-/ 1013 Cflult: Ch_o f(x) = fifi'dt' Khid6 f(Z,1)bang:

@ 2,7 8.3,J C 4,7 D 5,1 .

Cflul2: Tinh: K - 4s+J1.2r-dz .2+*Ji, ta duo c: ' .

CAul3: Trong ci{c phuong trinlr sau dAy, phuong trii6 n}o c6 nghiOm?

:

1 -1l:.xl

A x6 + 1=0 B Jx-4+5:0 C xi +(x-r); =g @ ^- -t=0 Ciul4: M€nh dd nio sau dAy li dring?

i-o (f -Jr)- (S -Jr)' B (*1 -J7)' , (J" -.,D I

t / r-\3 i r-tl

-r3

(r-J7)' lr-Jl) (d(^ -.,0)' (+-Ji)^ i

CAu15: Chon m0nh dO dring trong c6c m0nh dri sau: i

@ro

D 15

D 125

D.4

D.4

2

C6u5: Cho a li mdt sd duong, bidu thrlc ul Ji vidt dudi dang lu! thila vdi sd mfr hftu t!, lil:

(a) \-/ uu o B a6 C ai D a7

^-=

cAuT: Eidu thrlc u',11u] vidt dr-r-oi dang lu! ttrrra vryi sd mfl hfru $ ln: j'

i^2si

.

cauS: Bidu thfc Ji.fi.{/t' (x > 0) vidt du6i dang ru! thira v6i sd mfi hffu rf t}:

Trang 2

A 4-J5 > 4-'5 B 3r'r < 3l'?

t r- ti

CAu20: Rdi gorr bieu thLic: yrr/xlx1r : x ''

Carr16: Cho;" >;'t l{ t lilin ii}i;.liu iial,iii drirrg?

A.cr<$ @r;or$ C.u+$=g D.a.B=l

(t ''rt( ,[ \]

cau17: L-hoK= i *' -y' I i r-r.,i)' +)' I r",iiu thric nitgoncua K l):

\ i[ \^ x)

!$* B.2x C.x+l D.x-l

CAu18: RLit gon hidu thfc: JSLJbt , ta cludc:

A" 9a2b B -9a2b @ Oo'1t,|

Cfiulg: Rrit gon bidtr tlrLic: \[L- - U' lit duoc:

, ta dtloc:

D J;

@ *'lx+ rl

.[;) [i)"

@(3)'.(i)"

D Kdt quilkhdc

o lx(x + t)l

Cin22: Riit gon bidu thfrc o =_( rE - "'? * r

) (rt; * {& *,

) (^ - ,E - r )

A"xr+1 @)x2+'x+1 C.x2-x+1

5

/r\ra

A l:l

\,3 /

1

" [3)',

C.cr<3

I

1r \o

D.i:i

[:,r

ta duoc:

D.x2-1

@-:<o<3 B.ct>3

I

B (?\"

t3l

c 1

D.creR

:,fii nVG*i,/+ p tB+{/a

c6 gi6 tri bang:

CAu23: lieu :

2

j

;(r^ * u o )= t rhi gii tri curr o- la:

a -1.

A.3 8.2 C.r (U.O

\-f Ax1A r-h^ ? '''' - }-t \IA-t- .{A -;^ c-,r ,t^.; I; t,',-^,)

\-4U!4 UrlV v \ E, itrlrrrr uL rldu Jutr urrJ ld vlltrb,

CAu25: Truc cdn thttc & mAu bi<ju rhf J-; ta duoc:

.1/< -r/-r

vJ -1,/^1

il25 +i/lu + il4

s i/i * V, c.

7 1'/I-r

Ciu26: Rrit gon bidu thfic uut I I I to > 0), ta duoc:

/ A, a B.2a C 3a D.4a

\_-/

Ciru27: Rtit gon hieu thuc 6{r: ti

: b j:': (b > 0) ra duoc:

-+

CAu28: RLlt gon bidu thr?c x.{"x' :x'n (x > 0), ta duoc:

A V; B ii (9'r'* o *l

Cfiu29: Cho 9' + 9-* :23 Khi do bidu th(rc K = 1t1' I :-l

r a( 1'1

I_J -J

5

rA\ -:

\/ )

1l

D.2

, a -t-l

.Neua= {2+J3 I

\/

o rt l-l

(U

o u\jnl,

1\1

n.-thi gi6 tri cria A lh:

o-.Y 1

}t

vdu= (r-€) ' C*u30: Cho bidu th(rc A = (a + t)-' + (U * l)-'

Trang 3

@r I).2 u.3 f] ;i

HANI SO T,TiV'TTILTA

,r -;

Vl - x' cd tAp xiic dinh lir:

B.(-*; -11 u [i; +co) C l1\,{-1; I }

@n

(o*' -t)-' c6 tap xdc dinh li:

B(o; +m)) 0*{j,;i " [j, ;)

l

(o *^'

); c6 tap x6c dinh liL:

CAul: Hlim sd y =

A [-1; 1]

CA.uZ: Hhm sd y =

A.R

CAu3: Hlim sd y =

A [-2;2]

C*u4: Hhrn sd y =

A.R

CAu5: Hlm sd y =

*^,1(^' - I

)" co tap x6c dinh ld:

(U (1: +*) C (-l; 1)

D:R\{-l; 1} i r.r)L'

C y' = 2xV^'+ r :D y' =

,r -C y' = 3bx'{/a + bx j

D y' =

I

D.4

lAJv'=:

\-/' ?i/-2 - r

Uriu6: Hdrir sd y ,= i'Li-ii | .O clao h;inr f'(0) lh:

I

\At -;

.vJ

Cfiu7: Cho hlm ,d y =^tlT* - r Dao hlm f'(x) c6 r6p xdc dinh 1I: ,

A R _&Or ,, C (-co;0) u (2; +m) D R\{0; 2i

C;:iu9: Cha f(x) ,= x:il;2- Dao hi\m f'(1; bangi

@:

cflu1O: cho f(x) =

m Dao hhm f'(0) b[ng:

@#

Cau1tr: Trong cdc him so sau dA1,, him so nio dring biai trdn cic khoang no xii.c dinhi

cau12: cho hlm s6 y = (x + 2)-t I{0 thLlc giiia y vh y" khong phq thut\c v)o r lh:

Q).V"+2y=[) B.y" -6y'=0 {-.Zy', -3y=0 ,D.(y,,)r-4y=0

(;aul3lCho him so y = x' f}n rnflnh ctd sai trong c{c ur6nh dd sau: ;

E Dd rhi hirm so di ilrra .licrn 1 I : t;

C Dd rhi harn sO cri hai clu&rg ti6rn ctiii :

D Dd tiri hlrn so c6 rn6t tAm doi xfrng

s 1

J

A."

8

A I

c.2

Trang 4

'teula:

Tren cld thi (C) ciia hirm sci 1'= la;r clidrn Mo c6 hoinh d0 x^ = i Tidp tuydn cita (C') tai didrn N'{ , c6 phucfilg trinh il:

;1.

A.v=:x+[ '2

Ciuls: Tren cl6 thi cira hlm so y = xl-'la1 didm Mo c6 holnh c16 xn = 2* .Tidp tuyen cta (C) tai didrn Mn c6 h0 so s6c bins:

1

x2

lOcanir

Caul: Cho a > 0 vI a+ l Tim monh dd dring trong c6c menh dd sau:

A 1og" x c6 nghia voi Vx

C log"xy = log.x.log.y

C.2n-1 D.3

c.2

B iog.l = a vh log"a = C

O ro*" xn = nlog x (x > 0,n * 0)

B loe l= 1

"" x lof" x

CAu2: Cho a > 0 vir a+ 1,x i')r y li hai sd dtrong Tim mOnh d0 dfing trong c6c m0nh cld sarr:

x losx

A Ioc aa

-:r-y log, y

C 1og" (* t y) = logn x + 1og Y

CAu4: 1og, ii a' (a > 0 a+ 1) trirng:

;

CAuS:

B

bang:

C&u3: 1og tT bang:

l.

2

CAu6: 1ogr,0,125 b[ng:

/ :r,t::fJ\

C5ru7: los i l1i 11- | brng'

\' '\a )

5

CAuS: 49to'tt2 bang:

L ios, to CAu9: 64: -' bzing:

A 200 ts.400

Cau10: _10'o218' bang:

\/,

caull: oiros:3+3luers bing:

5

c.-4

5

c.'

J

3

8

1 J

[D, log x = logn a.log x

\_/

D.2

D.4

D.3

D.5

D.2

D.5

D 1200

D.3800

4

B.-5

.1

(n. \J3

log, {52

I

s

A -'

q

c.-5

@+

CAu12: u3-21os"b (a > 0, a+ 1, h > 0) bang:

a-(ry utu' B a'b c a'b'

Caul3: Ndri iog- 243 = 5 thi x bang:

(c 1000

c.4000

D ab2

D.5

Trang 5

' -\

c&u14: Ndu iog, ztr{i =-4 rhi x bang:

Ciul5: 3logr(logo 16)+1og, 2 bang:

>\?

IAI2 B"3 C.4

CAu16: Ndu log, x = llogu9 -log" 5 +1og" 2

CAu18: Neu 1og, x =51ogz a+4logrb (a, b >0) thi x bing:

@ u'a' B aab' c 5a + 4b D" 4a + 5b

Caul9*d{€u log, x = 8*g, ab) -ZIog, a3b (a, b > 0) thi x bang:

A aob6 (BJ a'b'o C a6b', D arb,o

Cau24: Cho log,6 = a " Khi do iog.i8 tinh tl-reo a ii:

1tr 2a-1

Cau25: Lfho log.5 = *; Iog, 5 -= b Khi ct,i logu 5

A -]- a+b OjL -a+b c a + b - ;'*'* ,D az +bz

CAu26: Gii sri ta c5 h0 thric a2 + b2 = 7ab (a,b > 0) H0 thrlc nlo sau day Ii dring?(a+bl = ,i?.

CAu28: Vdi gi;1 tri nlo c,ia x rhi bidu tirL?c logu (2x

as

-5

Cflul7: Ndu 1og" * = l(1og- 9 -31og 4) (a > 0, a*

2' ua ua

CAu20: C}o$2 = a Tinh 1925 theo a?

C&u21: Cho lg5 = a Tinh tgf "64 tneo at

A.? 55 r.1

4.2+5a

D.5

D.5

(a > 0, a* 1) thi x b[ng:

D.3

1) th) x blng:

D 16

@r,,-,

C.4-3a

D 3(5 - 2a)

B 1-6a

@o1u- ry

fl.6+7a

n

a_-u.vd-:

Cilr.Zh: Cho lg2 = a Tinh WEitheo "4 a?

Ceu23ICho logr 5 = a Khi d6 logo 500 rfnh theo a li: :

tinh theo a v) b th:

o rL

C log,

T = Z{togra + Iog, b)

Cim27: log* 8.1ogo 81 bang:

@ o <x<Z B.x>2

CAruZ9: TQp ho-p cdc gi6 rri cira x dd Uidu thrlc log,

A (0; 1) B (1; +m)

CAu30: log o 3.1og,36 al bang:

D 4log, ulo

=togrir+ logr b

vl

6 ', aL

.-*') c6 nghia?

i

C.-l<x<l lD.x<3

(*' - r' -2^) cd nghia: lh:

lpCr,0) u (2; +oo) r'[ (0; 2) u (4; +m)

Trang 6

@)+ B.-? c.z D I

F{A}l So n'rlr - H"cM sd l0c.,rRir

Caul: Tirn m0nl', CB dring trcng c6c rnenh <id sau:

A I-{}rn sdy - a' vdi 0 < a < i ih ;nOt lihrn sdddng bidn tr€n (-oc,; i-co)

B Hlrn so y - a' vdi a > I th m*t hlm sd nghich bidn tr0n (-m: +cc)

C Dd thi li)"m sd y = a* (0 < a * 1) 1*on cli qua didrn (a ; 1)

/n.bO thi c6c hirm sdy = a' vI y = i -: ; (0 < a * l) thi doi xrrng vdinhau qua truc tung

CAu2: Cho a > l Tim m0nh d6 ssi trqrns cdc m6nh di sau:

A.a'>1khix>0

8.0<a"<1khix<i)

QNeux <x.th) a' <rt'

(n)fruc tung li ti€m cAn dring cira dt) thi hhm so y = a"

Cdru3: Cno 0 < a < i Tim menh dd sai trcrng c:6c m6nh dii sau:

A.a'>lkhix<0

8.0<a'<1khix>0

/\

($ n-eu Xr ( Xz thi a'' < a"

D Truc holnh li tiOm cAn ngang c&a Cd thi hhm sd v = a'

CAu4: fim mOnh dd dfng trong c6c menh dd sa.u:

A Hdm sdy = 1og, x vcri 0 < a < I 1)rmOt hlrn so ddng bidn trOn kho6'ng (0 ; +cc)

B H).m s6 y = iog" x v<ri a > 1 lirm6t h)m so nghich bien tr6n khoang (0 ; +co)

C Hhm s6 y = 1og" x (0 < a * 1) co tip x6c dinh lh R

/

1p.D0thicdchhmsdy= log"x v)y- lsg x (0< a+I) thiddixfrngv6inhauquatrucholnh

CAuS: Cho a > 1 Tim m€nh r1d sai trong c6c inOnh'd.i sau,

A log"x >Okhix>1

B 1og^x<0khi0<x<1

C Neu xr ( X thi 1og, x, < 1og,

x-(ry Dd thi hhm sd y = 1og x c6 tiom cAn ngang l) truc hoinh

.CAu6: Cho 0 < a < lTirn mgnh dti sai trong cdc rn0nh dd sau:

A.iog,x>0khi0<x<l

B log"x<0khrx>1

/ \

Q,)Neu xr ( X, thi log x, < Log, x,

D Dd thi hhm sd y = 1og, x c6 tiOm cAn drlrng li truc tung

CAuT: Cho a > 0, a + 1 Tim rndnh dO dfing trong cdc m0nh dd sau:

A Tap girl tri cia hdrn sd y = a- 1)r tap R

/B)'Iap gi;i tri cria hhm sd y = logo x l) tap R

\-/ .L U

C T'?p xdc dinh cila him so y = a- li kho6,ng (0; +,:o)

D.T+p xdc dinh cria hlm sd y = 1og, x le mp R

CAuS: Hhrn sd Y = ltr (-^' - Sx - O) c6 tAp xdc dinhlh:

/^\

A (0; +co) B (-"o; 0) (C {2; 3) D (-*; 2) u (3; +co)

Cflu9: Hlm s6 y = ln (rtr; , -

^) .O tdp xic dinh li:

\/

Ciu10: Hhm -so y = ln !t - sl,, xl c6 tap xdc dinh th:

Trang 7

-$ xt{; kzn,kez\ B R\ {x+kln,ke Z}

Ciull: Hhm sd, = al; c6 tap rdc dinh li:

C*u12: Hlm sd y = 1og, (O^:,*') c6 tap x6c dinh li:

CAu13: Hhm sd y = log,G

fr O tap x6c dinh 1):

A (6; +o) B (0; +co) @(-*; ei

CAul4: Him s0 nlo du6i dAy ddng bidn tr6n tdp xdc dinh ctra n6?

A.y = (o,s)^

@r= (Jt)'

r:^ ('t\&

t9 t;l u (Ju )'

Cflul7: Sd nlo durii dAy ttri nho ho'n 1?

@ rog, (o,z) B log, 5

c R\tt*u", k€zl D.R

D (0; e)

D.R

/,r \x

s.v=l1l ' lal

\-,/

c."

C n"

C logn e

3

D Ket qui khfc

D.4

D.4

D.R

D-y=

D en

D 1og.9

D Ket qui kh6c

/ \x IC\

t_l

[ ".]

CAu15:H}rms6n}odu6idaythinghichbidntr6ntAp-x5cdinhciian6?

A.y=logrx B.y=logrrx

OV=log"x ,D.y=lognx

Ciu18: Him sd y = (*' -2x+2)e' cd dao him ti:

@ V' = x2e' B y' - -2xe" C y' = (Zx -'2)e*

Cfin19: Cho f(x1 = !r- :." D+o lilm f'(1) bang :

X<r

Ciu20: Cho f(x) = 9 { Dao 1},r f'(0) beng:

2

Cdu21: Cho f(x) = in?x Dao hlm f'(e) bang:

r:?

(riJ:

-e

{JAu22: H}n so f(x) = 1u ]l1 c6 dao h}m th:

^1

A.-C*u24: Cho f(x) =

A I

C*u25: Cho f1x; =

A 1

xx

41 _l+ B tn*

A

D

e

c1+

x*

CAu23: Cho f(x) = ln (*' + 1) , Dao hirrrr f'(l) bzing:

ln lsin lxl Dao he* r J +l

(92 c l Inltanxl Daohlur,

[;)

(ry: c 3

biing:

biing:

il4u26: Cho y = ln L Fle thri'c ci'iir v vh v' kh6ns ohu thudc vlo ,*: l:):

Trang 8

A.Y'-2Y (!V +e)=0 CYY'-2=(]

Cilttl7: Cho f(x) = e'''l- Dao-hhrn f'(0) bane:

A1 (s)z c"i D4

D.1n5

-n(q +,hr)

C nlnn D xzlnn

D.y'-4eY=0

D sin2x

D.4Ln2

D.x=2

Ciu28: pho ftx; = scosrr Dao hlm f'(0) bing:

@o ,1"t c.2 D 3

C*u29: Cho f(x) = 2;r Dao hlm f'(0) bang:

A.2 @ rnZ C.2ln2 D- Ket qui khdc

r'( o) cau30: cho f(x) = ranx vd rp(x) = ln(x - i ) Tinh :l; Drip so cfra bhi to6n llt:

a'(0)

Ciru3l: H)nr so ltx) =-ln(^ *'uir 1j c,rr.]ao hlm f't0) l):

Cfiu32:pho f(x) = 2'.3" Dao him f'(0) bang:

(!,1n6 B 1n2 C ln3

CAu33: Cho f(x) = x'.n* Dao hhm f'(1) bang:

A n(1 + 1n2) B r(l + lnn)

C" cos2x

c.2

D 2 + 1nl0

_i

C.x=-U

cau34: Hhm st5 y = ln lcos r + sin x

| o ouo hirm bang:

icosx-smxl

2

B.- -sin 2x

1og (x'+ 1) Dao hhm f'(i) bang:

B 1+1n2 igt

^ {}ac hlm f'(10) l;iinl:

-+, I

-5 ln 10

c' .-D4o ham cap hai f'(0) biurg:

xt ln x Dao h}m cap hai f^le) b21g:

8.3 c 4 (D.5

CAu39: Hhm so f(x) = xe-* dat cuc tri tai didrn:

Ciu40: II)m sd f(x) = x' ln x dat cuc tri tai ditim:

2

(A.i ^

\_./ cos Lx

CAu35: Cho f(x) =

-1

(a.t

V \n2

CAu36: Cho f(x) =

A In10

Ciu37: Cho f(x) =

A 1

Ciu38: Cho f(x) =

A.2

0,=,

CAu41: H)m sd y = e" (a;e 0) c6 dao hirm cdp n lir:

A y(n) -"u* B y(") =a"e'* C ,(') :,!e" D y(') =n.e"*

CA,u42: Hdm s6 y = lnx c6 dao hl'rn c{p n l}r:

^ (n) n!

A y' ' =; B y(') = (-l)n.'g+ c v'"' = lf D' v(') = #

CAu43: Cho f(x) = xte ^ bat phuctng tlinh f'(x) 2 0 c6 tAp nghi0m th:

A (2; +co) (B; t0; 2l C ( 2; 4 D Ket qui kh6c

C6u4zt: Cho ftirm s6 y = "'"'')Bie,, thfrc rtit gon cua [,= ]'cos,\ - yinx - y" la:

A cosx.e'i"* B.2e'i"^ g'o ,." o^,t

-CAu45;D6 thi (I-) cfia hhrn so f(x) = lnx cit truc hoiir ih tai didm A, tidp tuydn cira (L) tai A cd phuong trinh l}:

\ )'

Trang 9

pHtJoNG rnixu ivru vA pHUoNG rniruH r,Ocanfr

ilf,ul: Phumg trinh 43*-2 =L6 cd nghiOm th:

3

A.x=*

Cf,u2: TAp nghiOrn cria phuorrg trinh: 2*'-'-o = I le,

I6

Cflu3: Phuong trinh 42**3 - 8o-* c6 nghiem l):

(A.): B : c I D.2

( ^t.;\-"

CAu4: Phuong trinh 0, 125.42'-i = I + I 6 nghidm lh:

(.8] "

^

A.3 8.4 c.s (d.e

Cflu5:!\gong trinh: 2' +2*t +2*-7 -3r -3x-r *3V e6nghi€m Id:

(4i2 B 3 c.4 D s

CAu6: !\.u*g tr)nh: 2r*-6 +2^-= = L7 c6 nghiem l):

@)-3 8.2 c.3 D.s

C&u7: TAp nghi€m cria phuong trinh:J'-1 + 53-'* = 26 li:

a {z; +} n {:; r'\-/ s} @p,:y D @

Cflu8: Phuong trinh: 3{+ 4* = 5^ c6 nghi0m li:

Cfiu9: Phucmg trinh: 9' + 6* = 2.4* c6 ngtri€m Ih:

Cflu10: Phuong trinh: ? = -x + 6 c6 nghi€m ld: \-/

CAutr?: Phuong trinh: logx + log(x- q); I co nghiem th:

A.7 8"8 C.9 @,1 ro

C&u13: Ph*ong trinh: lg(5 4 -"xt) = 31S* c6 nghiem li:

C&uL4: Phucrng tr'inh: ln x + ln i:x - Z) = 0 c6 rldv nghiclm?

C&ulS: Fhir<rng tlinh: [n(r * 1)+ln(x +]) hr(x +7)

Cfru16: Phuong rrinli: log, x + log, x +- log x = 1l c6 nghi0m li:

A.24 ts 36 c 45 @ uo

Cfrul7: Phrrcrng trinh: krg, x + 3log, 2 = 4 c6 rAp nflhi0m ii'r:

(ry {z; s} r {+; :} c {+; io} D q)

CAull: X6c dinh m dd phuong trinh: 4* -2m.2* + rn + 2 = A cd hai nghi€rn phAn biet? Ddp 6n tI:

I

CAu18: Phuong trinh: 19 (x' - 6x+ t) = fg (x - :)

@tir) n {:; +} c {+; s}

la

C&u19: Phuong trinh: 4-lgx i + = 2+lgx = 1 c6 t6p nghi6m li:

c6 tAp nghi0m th:

D.O

Trang 10

@ 1ro, rool n {t;:o}

{*','} D o

Cf,u20: Phrrcrng trinh: x-2*rog' = 10[]0 c6 tip nghi€rr l]r:

a {to; too} r {tc; zo}

C&u21: Phuong trinh: iog" x + iog* x = -? c6 tAp nghiOm lh:

a (zo; t+) n (tz; o) c' (s; z)

@tot B {3} c {z; s} D rt;

C6;u22: Fhuong trinh: 1 og, x = -x + 6 cti tAp nghidrn ih:

^ {LIoNG rRiNH ntfi vi leicenir

l) - )' 6

Caul: I:10 phuong tiinh: l;-:: o:' vdi x > y c6 mdy ngiri6m:' x' - sK *I = G

\L -L)

/'

i3t''-2'=5

cau2: Fle phuong tri'h:

1* _ u.r, +z = a c6 nghiem th:

A (3; a) B (rr 3) @)(r' ,) o (+: +)

v

C0u9: He phuong tri,,t,' {* -'

,

U

i.ln x + 1n y = 31,,6 t6 *ghi€m ld:

l'x+2v=-l

CAu3: I-16 phuohg tr)ntr: L' c6 may nghi0m?

[4'*" * 16

17^+y =4

CAu4: H0 phuong trinh: ]

^, ".,,,1 nghiOm th:

I 1.,:+ - =O.j

e (z; i) B (+: -3) g,i(r; z) o (s; -:)

eAus:[i0phuorrgrr;*, ]:*t:7 uoi xzycongiriem ia']

[trgx +lgy:1

a (a; :) n (o; t)

_ Q(s; z) D Kdt qua kh6c

llsxv=5

CAirS: FIo phuong tri"h,

iil _'.rr, = 6'tai a )'y cd nghiern lb? ,

a (roo; ro) n (soo; +) @ irooo, ,oo1 'D Kdrquikhdc

ciu7: He phuong rrinh: {:t .' yt =-20

^ v6i x z y c6 nghiem lh:

llogrx+log,y=3

a (:: :) @ t+, z) c (:v?: .,i: ) D Kel quri kiidc

a (4; +), (r; s) B (2, +),(zz:o+) c (+' 16) (s: i6) ,,,fu,J(o' t),(z;z)

r lr I

/ C 1-: 1000 !

w ltO )

D.@

caur0: rre phucrns rri,.,n, {31t

- - 11" = 5^ 6 nghiorn l)

[4lgx+3lgv=18

(b) qrr; iz;

I.' t'

Ngày đăng: 16/12/2016, 17:23

TỪ KHÓA LIÊN QUAN

w