Dd tiri hlrn so c6 rn6t tAm doi xfrng s... Tim monh dd dring trong c6c menh dd sau: A.. Tim mOnh d0 dfing trong c6c m0nh cld sarr: x losx A.
Trang 1Cflu1: Tinh: K =
A L2
Cflu2: Tinh: K =
A 10
C*u3: Tinh: K =
(A)
-\_/ 13
LU? T}IUA L
[ 1)-o'" It\-:
l- | +l- I
\16' \,8/
B 16
2'.2-t +5-3.5*
, ta duoc:
c 18
, ta duo c 1o-3 : 1o-2 -(o,zs)o
,/ 1\'
2:4-2 +(3-' )' I 1 I
\ /lol \),/ t-' ,.taduoc
(r)-'
.l-l
\2)
5-'.25'+ (0, z)o
I
B.- -J
5 c.-a
3
2
CAu4: Tfnh: K = (0,04)-''' - (0,125)-l \/ , ta duo c
A.90 ( 8J121 C 120
,Y 6 4
CAuS: Tinh: K = 87 : 3i - 31.3i ra duoc
7_52-5"
Cflu9: Cho f(x) = V;.V; Khi d6 f(g.S?) bang: \'
A o,1 '!:P G/,3 D o,4
cflulo: Cho fix) = J*.}',
Khid6 fr!'l bdne:
il
10 rb) \-/ 1013 Cflult: Ch_o f(x) = fifi'dt' Khid6 f(Z,1)bang:
@ 2,7 8.3,J C 4,7 D 5,1 .
Cflul2: Tinh: K - 4s+J1.2r-dz .2+*Ji, ta duo c: ' .
CAul3: Trong ci{c phuong trinlr sau dAy, phuong trii6 n}o c6 nghiOm?
:
1 -1l:.xl
A x6 + 1=0 B Jx-4+5:0 C xi +(x-r); =g @ ^- -t=0 Ciul4: M€nh dd nio sau dAy li dring?
i-o (f -Jr)- (S -Jr)' B (*1 -J7)' , (J" -.,D I
t / r-\3 i r-tl
-r3
(r-J7)' lr-Jl) (d(^ -.,0)' (+-Ji)^ i
CAu15: Chon m0nh dO dring trong c6c m0nh dri sau: i
@ro
D 15
D 125
D.4
D.4
2
C6u5: Cho a li mdt sd duong, bidu thrlc ul Ji vidt dudi dang lu! thila vdi sd mfr hftu t!, lil:
(a) \-/ uu o B a6 C ai D a7
^-=
cAuT: Eidu thrlc u',11u] vidt dr-r-oi dang lu! ttrrra vryi sd mfl hfru $ ln: j'
i^2si
.
cauS: Bidu thfc Ji.fi.{/t' (x > 0) vidt du6i dang ru! thira v6i sd mfi hffu rf t}:
Trang 2A 4-J5 > 4-'5 B 3r'r < 3l'?
t r- ti
CAu20: Rdi gorr bieu thLic: yrr/xlx1r : x ''
Carr16: Cho;" >;'t l{ t lilin ii}i;.liu iial,iii drirrg?
A.cr<$ @r;or$ C.u+$=g D.a.B=l
(t ''rt( ,[ \]
cau17: L-hoK= i *' -y' I i r-r.,i)' +)' I r",iiu thric nitgoncua K l):
\ i[ \^ x)
!$* B.2x C.x+l D.x-l
CAu18: RLit gon hidu thfc: JSLJbt , ta cludc:
A" 9a2b B -9a2b @ Oo'1t,|
Cfiulg: Rrit gon bidtr tlrLic: \[L- - U' lit duoc:
, ta dtloc:
D J;
@ *'lx+ rl
.[;) [i)"
@(3)'.(i)"
D Kdt quilkhdc
o lx(x + t)l
Cin22: Riit gon bidu thfrc o =_( rE - "'? * r
) (rt; * {& *,
) (^ - ,E - r )
A"xr+1 @)x2+'x+1 C.x2-x+1
5
/r\ra
A l:l
\,3 /
1
" [3)',
C.cr<3
I
1r \o
D.i:i
[:,r
ta duoc:
D.x2-1
@-:<o<3 B.ct>3
I
B (?\"
t3l
c 1
D.creR
:,fii nVG*i,/+ p tB+{/a
c6 gi6 tri bang:
CAu23: lieu :
2
j
;(r^ * u o )= t rhi gii tri curr o- la:
a -1.
A.3 8.2 C.r (U.O
\-f Ax1A r-h^ ? '''' - }-t \IA-t- .{A -;^ c-,r ,t^.; I; t,',-^,)
\-4U!4 UrlV v \ E, itrlrrrr uL rldu Jutr urrJ ld vlltrb,
CAu25: Truc cdn thttc & mAu bi<ju rhf J-; ta duoc:
.1/< -r/-r
vJ -1,/^1
il25 +i/lu + il4
s i/i * V, c.
7 1'/I-r
Ciu26: Rrit gon bidu thfic uut I I I to > 0), ta duoc:
/ A, a B.2a C 3a D.4a
\_-/
Ciru27: Rtit gon hieu thuc 6{r: ti
: b j:': (b > 0) ra duoc:
-+
CAu28: RLlt gon bidu thr?c x.{"x' :x'n (x > 0), ta duoc:
A V; B ii (9'r'* o *l
Cfiu29: Cho 9' + 9-* :23 Khi do bidu th(rc K = 1t1' I :-l
r a( 1'1
I_J -J
5
rA\ -:
\/ )
1l
D.2
, a -t-l
.Neua= {2+J3 I
\/
o rt l-l
(U
o u\jnl,
1\1
n.-thi gi6 tri cria A lh:
o-.Y 1
}t
vdu= (r-€) ' C*u30: Cho bidu th(rc A = (a + t)-' + (U * l)-'
Trang 3@r I).2 u.3 f] ;i
HANI SO T,TiV'TTILTA
,r -;
Vl - x' cd tAp xiic dinh lir:
B.(-*; -11 u [i; +co) C l1\,{-1; I }
@n
(o*' -t)-' c6 tap xdc dinh li:
B(o; +m)) 0*{j,;i " [j, ;)
l
(o *^'
); c6 tap x6c dinh liL:
CAul: Hlim sd y =
A [-1; 1]
CA.uZ: Hhm sd y =
A.R
CAu3: Hlim sd y =
A [-2;2]
C*u4: Hhrn sd y =
A.R
CAu5: Hlm sd y =
*^,1(^' - I
)" co tap x6c dinh ld:
(U (1: +*) C (-l; 1)
D:R\{-l; 1} i r.r)L'
C y' = 2xV^'+ r :D y' =
,r -C y' = 3bx'{/a + bx j
D y' =
I
D.4
lAJv'=:
\-/' ?i/-2 - r
Uriu6: Hdrir sd y ,= i'Li-ii | .O clao h;inr f'(0) lh:
I
\At -;
.vJ
Cfiu7: Cho hlm ,d y =^tlT* - r Dao hlm f'(x) c6 r6p xdc dinh 1I: ,
A R _&Or ,, C (-co;0) u (2; +m) D R\{0; 2i
C;:iu9: Cha f(x) ,= x:il;2- Dao hi\m f'(1; bangi
@:
cflu1O: cho f(x) =
m Dao hhm f'(0) b[ng:
@#
Cau1tr: Trong cdc him so sau dA1,, him so nio dring biai trdn cic khoang no xii.c dinhi
cau12: cho hlm s6 y = (x + 2)-t I{0 thLlc giiia y vh y" khong phq thut\c v)o r lh:
Q).V"+2y=[) B.y" -6y'=0 {-.Zy', -3y=0 ,D.(y,,)r-4y=0
(;aul3lCho him so y = x' f}n rnflnh ctd sai trong c{c ur6nh dd sau: ;
E Dd rhi hirm so di ilrra .licrn 1 I : t;
C Dd rhi harn sO cri hai clu&rg ti6rn ctiii :
D Dd tiri hlrn so c6 rn6t tAm doi xfrng
s 1
J
A."
8
A I
c.2
Trang 4'teula:
Tren cld thi (C) ciia hirm sci 1'= la;r clidrn Mo c6 hoinh d0 x^ = i Tidp tuydn cita (C') tai didrn N'{ , c6 phucfilg trinh il:
;1.
A.v=:x+[ '2
Ciuls: Tren cl6 thi cira hlm so y = xl-'la1 didm Mo c6 holnh c16 xn = 2* .Tidp tuyen cta (C) tai didrn Mn c6 h0 so s6c bins:
1
x2
lOcanir
Caul: Cho a > 0 vI a+ l Tim monh dd dring trong c6c menh dd sau:
A 1og" x c6 nghia voi Vx
C log"xy = log.x.log.y
C.2n-1 D.3
c.2
B iog.l = a vh log"a = C
O ro*" xn = nlog x (x > 0,n * 0)
B loe l= 1
"" x lof" x
CAu2: Cho a > 0 vir a+ 1,x i')r y li hai sd dtrong Tim mOnh d0 dfing trong c6c m0nh cld sarr:
x losx
A Ioc aa
-:r-y log, y
C 1og" (* t y) = logn x + 1og Y
CAu4: 1og, ii a' (a > 0 a+ 1) trirng:
;
CAuS:
B
bang:
C&u3: 1og tT bang:
l.
2
CAu6: 1ogr,0,125 b[ng:
/ :r,t::fJ\
C5ru7: los i l1i 11- | brng'
\' '\a )
5
CAuS: 49to'tt2 bang:
L ios, to CAu9: 64: -' bzing:
A 200 ts.400
Cau10: _10'o218' bang:
\/,
caull: oiros:3+3luers bing:
5
c.-4
5
c.'
J
3
8
1 J
[D, log x = logn a.log x
\_/
D.2
D.4
D.3
D.5
D.2
D.5
D 1200
D.3800
4
B.-5
.1
(n. \J3
log, {52
I
s
A -'
q
c.-5
@+
CAu12: u3-21os"b (a > 0, a+ 1, h > 0) bang:
a-(ry utu' B a'b c a'b'
Caul3: Ndri iog- 243 = 5 thi x bang:
(c 1000
c.4000
D ab2
D.5
Trang 5' -\
c&u14: Ndu iog, ztr{i =-4 rhi x bang:
Ciul5: 3logr(logo 16)+1og, 2 bang:
>\?
IAI2 B"3 C.4
CAu16: Ndu log, x = llogu9 -log" 5 +1og" 2
CAu18: Neu 1og, x =51ogz a+4logrb (a, b >0) thi x bing:
@ u'a' B aab' c 5a + 4b D" 4a + 5b
Caul9*d{€u log, x = 8*g, ab) -ZIog, a3b (a, b > 0) thi x bang:
A aob6 (BJ a'b'o C a6b', D arb,o
Cau24: Cho log,6 = a " Khi do iog.i8 tinh tl-reo a ii:
1tr 2a-1
Cau25: Lfho log.5 = *; Iog, 5 -= b Khi ct,i logu 5
A -]- a+b OjL -a+b c a + b - ;'*'* ,D az +bz
CAu26: Gii sri ta c5 h0 thric a2 + b2 = 7ab (a,b > 0) H0 thrlc nlo sau day Ii dring?(a+bl = ,i?.
CAu28: Vdi gi;1 tri nlo c,ia x rhi bidu tirL?c logu (2x
as
-5
Cflul7: Ndu 1og" * = l(1og- 9 -31og 4) (a > 0, a*
2' ua ua
CAu20: C}o$2 = a Tinh 1925 theo a?
C&u21: Cho lg5 = a Tinh tgf "64 tneo at
A.? 55 r.1
4.2+5a
D.5
D.5
(a > 0, a* 1) thi x b[ng:
D.3
1) th) x blng:
D 16
@r,,-,
C.4-3a
D 3(5 - 2a)
B 1-6a
@o1u- ry
fl.6+7a
n
a_-u.vd-:
Cilr.Zh: Cho lg2 = a Tinh WEitheo "4 a?
Ceu23ICho logr 5 = a Khi d6 logo 500 rfnh theo a li: :
tinh theo a v) b th:
o rL
C log,
T = Z{togra + Iog, b)
Cim27: log* 8.1ogo 81 bang:
@ o <x<Z B.x>2
CAruZ9: TQp ho-p cdc gi6 rri cira x dd Uidu thrlc log,
A (0; 1) B (1; +m)
CAu30: log o 3.1og,36 al bang:
D 4log, ulo
=togrir+ logr b
vl
6 ', aL
.-*') c6 nghia?
i
C.-l<x<l lD.x<3
(*' - r' -2^) cd nghia: lh:
lpCr,0) u (2; +oo) r'[ (0; 2) u (4; +m)
Trang 6@)+ B.-? c.z D I
F{A}l So n'rlr - H"cM sd l0c.,rRir
Caul: Tirn m0nl', CB dring trcng c6c rnenh <id sau:
A I-{}rn sdy - a' vdi 0 < a < i ih ;nOt lihrn sdddng bidn tr€n (-oc,; i-co)
B Hlrn so y - a' vdi a > I th m*t hlm sd nghich bidn tr0n (-m: +cc)
C Dd thi li)"m sd y = a* (0 < a * 1) 1*on cli qua didrn (a ; 1)
/n.bO thi c6c hirm sdy = a' vI y = i -: ; (0 < a * l) thi doi xrrng vdinhau qua truc tung
CAu2: Cho a > l Tim m0nh d6 ssi trqrns cdc m6nh di sau:
A.a'>1khix>0
8.0<a"<1khix<i)
QNeux <x.th) a' <rt'
(n)fruc tung li ti€m cAn dring cira dt) thi hhm so y = a"
Cdru3: Cno 0 < a < i Tim menh dd sai trcrng c:6c m6nh dii sau:
A.a'>lkhix<0
8.0<a'<1khix>0
/\
($ n-eu Xr ( Xz thi a'' < a"
D Truc holnh li tiOm cAn ngang c&a Cd thi hhm sd v = a'
CAu4: fim mOnh dd dfng trong c6c menh dd sa.u:
A Hdm sdy = 1og, x vcri 0 < a < I 1)rmOt hlrn so ddng bidn trOn kho6'ng (0 ; +cc)
B H).m s6 y = iog" x v<ri a > 1 lirm6t h)m so nghich bien tr6n khoang (0 ; +co)
C Hhm s6 y = 1og" x (0 < a * 1) co tip x6c dinh lh R
/
1p.D0thicdchhmsdy= log"x v)y- lsg x (0< a+I) thiddixfrngv6inhauquatrucholnh
CAuS: Cho a > 1 Tim m€nh r1d sai trong c6c inOnh'd.i sau,
A log"x >Okhix>1
B 1og^x<0khi0<x<1
C Neu xr ( X thi 1og, x, < 1og,
x-(ry Dd thi hhm sd y = 1og x c6 tiom cAn ngang l) truc hoinh
.CAu6: Cho 0 < a < lTirn mgnh dti sai trong cdc rn0nh dd sau:
A.iog,x>0khi0<x<l
B log"x<0khrx>1
/ \
Q,)Neu xr ( X, thi log x, < Log, x,
D Dd thi hhm sd y = 1og, x c6 tiOm cAn drlrng li truc tung
CAuT: Cho a > 0, a + 1 Tim rndnh dO dfing trong cdc m0nh dd sau:
A Tap girl tri cia hdrn sd y = a- 1)r tap R
/B)'Iap gi;i tri cria hhm sd y = logo x l) tap R
\-/ .L U
C T'?p xdc dinh cila him so y = a- li kho6,ng (0; +,:o)
D.T+p xdc dinh cria hlm sd y = 1og, x le mp R
CAuS: Hhrn sd Y = ltr (-^' - Sx - O) c6 tAp xdc dinhlh:
/^\
A (0; +co) B (-"o; 0) (C {2; 3) D (-*; 2) u (3; +co)
Cflu9: Hlm s6 y = ln (rtr; , -
^) .O tdp xic dinh li:
\/
Ciu10: Hhm -so y = ln !t - sl,, xl c6 tap xdc dinh th:
Trang 7-$ xt{; kzn,kez\ B R\ {x+kln,ke Z}
Ciull: Hhm sd, = al; c6 tap rdc dinh li:
C*u12: Hlm sd y = 1og, (O^:,*') c6 tap x6c dinh li:
CAu13: Hhm sd y = log,G
fr O tap x6c dinh 1):
A (6; +o) B (0; +co) @(-*; ei
CAul4: Him s0 nlo du6i dAy ddng bidn tr6n tdp xdc dinh ctra n6?
A.y = (o,s)^
@r= (Jt)'
r:^ ('t\&
t9 t;l u (Ju )'
Cflul7: Sd nlo durii dAy ttri nho ho'n 1?
@ rog, (o,z) B log, 5
c R\tt*u", k€zl D.R
D (0; e)
D.R
/,r \x
s.v=l1l ' lal
\-,/
c."
C n"
C logn e
3
D Ket qui khfc
D.4
D.4
D.R
D-y=
D en
D 1og.9
D Ket qui kh6c
/ \x IC\
t_l
[ ".]
CAu15:H}rms6n}odu6idaythinghichbidntr6ntAp-x5cdinhciian6?
A.y=logrx B.y=logrrx
OV=log"x ,D.y=lognx
Ciu18: Him sd y = (*' -2x+2)e' cd dao him ti:
@ V' = x2e' B y' - -2xe" C y' = (Zx -'2)e*
Cfin19: Cho f(x1 = !r- :." D+o lilm f'(1) bang :
X<r
Ciu20: Cho f(x) = 9 { Dao 1},r f'(0) beng:
2
Cdu21: Cho f(x) = in?x Dao hlm f'(e) bang:
r:?
(riJ:
-e
{JAu22: H}n so f(x) = 1u ]l1 c6 dao h}m th:
^1
A.-C*u24: Cho f(x) =
A I
C*u25: Cho f1x; =
A 1
xx
41 _l+ B tn*
A
D
e
c1+
x*
CAu23: Cho f(x) = ln (*' + 1) , Dao hirrrr f'(l) bzing:
ln lsin lxl Dao he* r J +l
(92 c l Inltanxl Daohlur,
[;)
(ry: c 3
biing:
biing:
il4u26: Cho y = ln L Fle thri'c ci'iir v vh v' kh6ns ohu thudc vlo ,*: l:):
Trang 8A.Y'-2Y (!V +e)=0 CYY'-2=(]
Cilttl7: Cho f(x) = e'''l- Dao-hhrn f'(0) bane:
A1 (s)z c"i D4
D.1n5
-n(q +,hr)
C nlnn D xzlnn
D.y'-4eY=0
D sin2x
D.4Ln2
D.x=2
Ciu28: pho ftx; = scosrr Dao hlm f'(0) bing:
@o ,1"t c.2 D 3
C*u29: Cho f(x) = 2;r Dao hlm f'(0) bang:
A.2 @ rnZ C.2ln2 D- Ket qui khdc
r'( o) cau30: cho f(x) = ranx vd rp(x) = ln(x - i ) Tinh :l; Drip so cfra bhi to6n llt:
a'(0)
Ciru3l: H)nr so ltx) =-ln(^ *'uir 1j c,rr.]ao hlm f't0) l):
Cfiu32:pho f(x) = 2'.3" Dao him f'(0) bang:
(!,1n6 B 1n2 C ln3
CAu33: Cho f(x) = x'.n* Dao hhm f'(1) bang:
A n(1 + 1n2) B r(l + lnn)
C" cos2x
c.2
D 2 + 1nl0
_i
C.x=-U
cau34: Hhm st5 y = ln lcos r + sin x
| o ouo hirm bang:
icosx-smxl
2
B.- -sin 2x
1og (x'+ 1) Dao hhm f'(i) bang:
B 1+1n2 igt
^ {}ac hlm f'(10) l;iinl:
-+, I
-5 ln 10
c' .-D4o ham cap hai f'(0) biurg:
xt ln x Dao h}m cap hai f^le) b21g:
8.3 c 4 (D.5
CAu39: Hhm so f(x) = xe-* dat cuc tri tai didrn:
Ciu40: II)m sd f(x) = x' ln x dat cuc tri tai ditim:
2
(A.i ^
\_./ cos Lx
CAu35: Cho f(x) =
-1
(a.t
V \n2
CAu36: Cho f(x) =
A In10
Ciu37: Cho f(x) =
A 1
Ciu38: Cho f(x) =
A.2
0,=,
CAu41: H)m sd y = e" (a;e 0) c6 dao hirm cdp n lir:
A y(n) -"u* B y(") =a"e'* C ,(') :,!e" D y(') =n.e"*
CA,u42: Hdm s6 y = lnx c6 dao hl'rn c{p n l}r:
^ (n) n!
A y' ' =; B y(') = (-l)n.'g+ c v'"' = lf D' v(') = #
CAu43: Cho f(x) = xte ^ bat phuctng tlinh f'(x) 2 0 c6 tAp nghi0m th:
A (2; +co) (B; t0; 2l C ( 2; 4 D Ket qui kh6c
C6u4zt: Cho ftirm s6 y = "'"'')Bie,, thfrc rtit gon cua [,= ]'cos,\ - yinx - y" la:
A cosx.e'i"* B.2e'i"^ g'o ,." o^,t
-CAu45;D6 thi (I-) cfia hhrn so f(x) = lnx cit truc hoiir ih tai didm A, tidp tuydn cira (L) tai A cd phuong trinh l}:
\ )'
Trang 9pHtJoNG rnixu ivru vA pHUoNG rniruH r,Ocanfr
ilf,ul: Phumg trinh 43*-2 =L6 cd nghiOm th:
3
A.x=*
Cf,u2: TAp nghiOrn cria phuorrg trinh: 2*'-'-o = I le,
I6
Cflu3: Phuong trinh 42**3 - 8o-* c6 nghiem l):
(A.): B : c I D.2
( ^t.;\-"
CAu4: Phuong trinh 0, 125.42'-i = I + I 6 nghidm lh:
(.8] "
^
A.3 8.4 c.s (d.e
Cflu5:!\gong trinh: 2' +2*t +2*-7 -3r -3x-r *3V e6nghi€m Id:
(4i2 B 3 c.4 D s
CAu6: !\.u*g tr)nh: 2r*-6 +2^-= = L7 c6 nghiem l):
@)-3 8.2 c.3 D.s
C&u7: TAp nghi€m cria phuong trinh:J'-1 + 53-'* = 26 li:
a {z; +} n {:; r'\-/ s} @p,:y D @
Cflu8: Phuong trinh: 3{+ 4* = 5^ c6 nghi0m li:
Cfiu9: Phucmg trinh: 9' + 6* = 2.4* c6 ngtri€m Ih:
Cflu10: Phuong trinh: ? = -x + 6 c6 nghi€m ld: \-/
CAutr?: Phuong trinh: logx + log(x- q); I co nghiem th:
A.7 8"8 C.9 @,1 ro
C&u13: Ph*ong trinh: lg(5 4 -"xt) = 31S* c6 nghiem li:
C&uL4: Phucrng tr'inh: ln x + ln i:x - Z) = 0 c6 rldv nghiclm?
C&ulS: Fhir<rng tlinh: [n(r * 1)+ln(x +]) hr(x +7)
Cfru16: Phuong rrinli: log, x + log, x +- log x = 1l c6 nghi0m li:
A.24 ts 36 c 45 @ uo
Cfrul7: Phrrcrng trinh: krg, x + 3log, 2 = 4 c6 rAp nflhi0m ii'r:
(ry {z; s} r {+; :} c {+; io} D q)
CAull: X6c dinh m dd phuong trinh: 4* -2m.2* + rn + 2 = A cd hai nghi€rn phAn biet? Ddp 6n tI:
I
CAu18: Phuong trinh: 19 (x' - 6x+ t) = fg (x - :)
@tir) n {:; +} c {+; s}
la
C&u19: Phuong trinh: 4-lgx i + = 2+lgx = 1 c6 t6p nghi6m li:
c6 tAp nghi0m th:
D.O
Trang 10@ 1ro, rool n {t;:o}
{*','} D o
Cf,u20: Phrrcrng trinh: x-2*rog' = 10[]0 c6 tip nghi€rr l]r:
a {to; too} r {tc; zo}
C&u21: Phuong trinh: iog" x + iog* x = -? c6 tAp nghiOm lh:
a (zo; t+) n (tz; o) c' (s; z)
@tot B {3} c {z; s} D rt;
C6;u22: Fhuong trinh: 1 og, x = -x + 6 cti tAp nghidrn ih:
^ {LIoNG rRiNH ntfi vi leicenir
l) - )' 6
Caul: I:10 phuong tiinh: l;-:: o:' vdi x > y c6 mdy ngiri6m:' x' - sK *I = G
\L -L)
/'
i3t''-2'=5
cau2: Fle phuong tri'h:
1* _ u.r, +z = a c6 nghiem th:
A (3; a) B (rr 3) @)(r' ,) o (+: +)
v
C0u9: He phuong tri,,t,' {* -'
,
U
i.ln x + 1n y = 31,,6 t6 *ghi€m ld:
l'x+2v=-l
CAu3: I-16 phuohg tr)ntr: L' c6 may nghi0m?
[4'*" * 16
17^+y =4
CAu4: H0 phuong trinh: ]
^, ".,,,1 nghiOm th:
I 1.,:+ - =O.j
e (z; i) B (+: -3) g,i(r; z) o (s; -:)
eAus:[i0phuorrgrr;*, ]:*t:7 uoi xzycongiriem ia']
[trgx +lgy:1
a (a; :) n (o; t)
_ Q(s; z) D Kdt qua kh6c
llsxv=5
CAirS: FIo phuong tri"h,
iil _'.rr, = 6'tai a )'y cd nghiern lb? ,
a (roo; ro) n (soo; +) @ irooo, ,oo1 'D Kdrquikhdc
ciu7: He phuong rrinh: {:t .' yt =-20
^ v6i x z y c6 nghiem lh:
llogrx+log,y=3
a (:: :) @ t+, z) c (:v?: .,i: ) D Kel quri kiidc
a (4; +), (r; s) B (2, +),(zz:o+) c (+' 16) (s: i6) ,,,fu,J(o' t),(z;z)
r lr I
/ C 1-: 1000 !
w ltO )
D.@
caur0: rre phucrns rri,.,n, {31t
- - 11" = 5^ 6 nghiorn l)
[4lgx+3lgv=18
(b) qrr; iz;
I.' t'