Để thực hiện mục đích giảng dạy hiện nay, nhằm nâng cao chất l-ợng, hiệu quả của việc dạy và học với hớng đổi mới phơng pháp dạy học là tích cực hoá hoạt động học tập của học sinh, khơi
Trang 1Kinh nghiệm:
Hớng dẫn học sinh lớp 7 tập suy luận
trong giải bài tập của chơng tam giác.
A- Đặt vấn đề:
Trong trờng THCS bộ môn toán là một trong những bộ môn đợc coi trọng, vì nó là bản lề cho học sinh học tốt các bộ môn khoa học tự nhiên khác Để thực hiện mục đích giảng dạy hiện nay, nhằm nâng cao chất l-ợng, hiệu quả của việc dạy và học với hớng đổi mới phơng pháp dạy học là tích cực hoá hoạt động học tập của học sinh, khơi dậy và phát triển khả năng tự học, nhằm hình thành cho học sinh t duy tích cực, độc lập, sáng tạo, nâng cao năng lực, phát hiện và giải quyết vấn đề, rèn luyện kĩ năng vận dụng kiến thức vào thực tiễn, tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh Do đó việc giảng dạy Toán ở Trờng THCS
là vấn đề hết sức nặng nề Nhất là đối với học sinh bậc THCS hiện nay thì phân môn Hình học là môn học khó nhất, trừu tợng nhất Để học sinh hiểu thấu đáo các vấn đề về Toán- Hình học, đòi hỏi ngời giáo viên giảng dạy
bộ môn phải hết sức nhạy bén với sự thay đổi của dạng toán từ đó có
ph-ơng pháp phù hợp với các đối tợng học sinh của mình
Qua việc giảng dạy thực tế nhiều năm ở THCS tôi thấy hiện nay đa số học sinh sợ học môn Hình học Tìm hiểu nguyên nhân tôi thấy có rất nhiều học sinh cha có phơng pháp học phù hợp, nhiều em cha thực sự hứng thú học tập bộ môn vì không hiểu, không tiếp thu kịp trong các tiết học Hình Những vấn đề này có nhiều lí do: Trong chơng Hình học ở bậcTHCS hiện nay có nhiều tiết học, bài học dài, khó dạy - Nhất là chơng trình Hình học 7.Để đảm bảo tiến trình về thời gian lên lớp , nhiều giáo viên phải giảng nhanh , tổ chức hoạt động thảo luận của học sinh không
đảm bảo đủ thời gian để học sinh làm việc hoặc bỏ qua luôn hình thức hoạt động này nên rất nhiều học sinh không nắm đợc bài hoặc ngộ nhận kiến thức của bài mới Do đó đa số học sinh có lực học TB khá ,TB và yếu không nắm đợc những kiến thức cơ bản của chơng trình học nên không theo kịp yêu cầu của bộ môn học -từ đó mà học sinh sợ học Hình học Mặt khác , việc suy luận có căn cứ đối với học sinh là tơng đối khó,đặc biệt là học sinh lớp 7 các em mới đợc làm quen với chứng minh Hình học.Kỹ năng vẽ hình còn chậm ,chủ yếu các em mới biết chứng minh bằng đo đạc hoặc chấp nhận một số sự kiện hình học bây giờ mới đợc bắt
Trang 2đầu tập dợt suy luận có căn cứ và trình bày chứng minh hình học hoàn chỉnh Đặt biệt rất nhiều học sinh khi giáo viên hớng dẫn thì các em trả lời miệng suy luận có căn cứ tốt , nhng khi cho các em tự trình bày chứng minh bài toán thì không vẽ đợc hình hoặc vẽ hình không chính xác ,viết
GT , KL của bài toán thì chép lại đề bài và đặc biệt không biết trình bày chứng minh nh thế nào ,bắt đầu từ đâu Hoặc biết đa ra suy luận có căn cứ nhng trình bày lung tung không lôgic ,trình bày không khoa học
Trớc tình hình thực trạng trên là ngời giáo viên giảng dạy Toán THCS chúng tôi không khỏi băn khoăn , trăn trở phải giảng dạy nh thế nào đây
để vừa đảm bảo đủ thời gian vừa đảm bảo dạy đúng phơng pháp đổi mới
đạt kết qủa.Kích thích đợc sự say mê ,hứng thú học tập bộ môn tạo đợc niềm vui cho học sinh Từ đó giúp các em yêu thích môn học nắm vững chơng trình kiến thức đạt kết quả cao trong môn Toán ở bậc học THCS Qua quá trình giảng dạy và trao đổi cùng đồng nghiệp, sau bốn năm thay SGK Toán 7 chúng tôi thấy : Để giải quyết tất cả các vấn đề đã nêu ở trên chúng ta phải có phơng pháp hớng dẫn học sinh cách suy luận có căn
cứ trong chứng minh bài toán hình học 7 Các em phải đợc tập suy luận từ
dễ đến khó, từ đơn giản đến phức tạp Và sau đây tôi muốn trao đổi cùng bạn đọc và các đồng nghiệp kinh nghiệm : “Hớng dẫn học sinh lớp 7 tập suy luận trong giải bài tập của chơng Tam giác “
Trong kinh nghiệm này tôi muốn đạt đợc mục tiêu là học sinh phải
đ-ợc : - Rèn luyện khả năng suy luận có căn cứ
- Phát huy đợc khả năng sáng tạo , phát triển khả năng tự học ,hình thành cho học sinh t duy tích cực ,độc lập và kích thích tò mò ham tìm hiểu đem lại niềm vui cho các em
- Phát huy đợc t duy sáng tạo ,cách trình bày ,cách diễn đạt chặt chẽ lôgic trong giải bài tập chứng minh hình học ,đáp ứng việc đổi mới phơng pháp giảng dạy nâng cao chất lợng bộ môn Toán nói chung- môn Hình học 7 nói riêng
Đây là kinh nghiệm của bản thân tôi trong giảng dạy toán ở THCS cũng
nh dạy toán 7 nói riêng Chắc chắn trong bài viết này còn nhiều điều cha thật đầy đủ ,cha thật phù hợp với đối tợng học sinh của bạn đọc Do đó tôi rất mong nhận đợc sự đóng góp ý kiến của các đồng nghiệp ,của Hội đồng
bộ môn Toán và quý vị đọc bài viết này Xin chân thành cám ơn
B- Giải quyết vấn đề
Trong chơng trình Toán 7-Phần Hình học-ở chơng II Tam giác bao gồm 3 nội dung chính ,đó là:
- Một số tính chất của tam giác
Trang 3- Một số dạng tam giác đặc biệt.
- Các trờng hợp bằng nhau của hai tam giác
Với các nội dung chủ yếu trên các bài tập của chơng yêu cầu học sinh phải biết cách trình bày bài toán hình học :trình bày lời giải sắp xếp đúng trình tự ,chứng minh gọn gàng và đầy đủ.Suy luận có căn cứ rõ ràng-chứng minh một cách tờng minh
Vậy hớng dẫn học sinh tập suy luận trong giải bài tập của chơng Tam giác nh thế nào để đạt kết quả cao.Đó là vấn đề ngời giáo viên đứng lớp luôn quan tâm, trăn trở, tìm tòi phơng pháp dạy học sao cho phù hợp đối tợng học trò của mình Sau nhiều năm giảng dạy lớp 7 tôi đã cùng đồng nghiệp trao đổi , thực nghiệm và tự đa ra đợc Kinh nghiệm : "Hớng dẫn
học sinh tập suy luận trong giải bài tập của chơng Tam giác-Phần hình học 7 "
Sau đây tôi xin trình bày nội dung của kinh nghiệm để bạn đọc cùng tham khảo ,đóng góp ý kiến với tôi để bài viết đợc hoàn thiện hơn Qua
đó sẽ giúp chúng ta hoàn thành đợc tốt hơn nhiệm vụ giảng dạy mà Đảng
và Nhà nớc đã giao cho ngành Giáo dục
Giải bài tập hình học là một “đề tài “ khó đối với học sinh cấp THCS , nhất là với học sinh lớp 7- Các em mới làm quen với các khái niệm, định nghĩa , định lí, cách chứng minh định lí.Bắt đầu từ đây,khi giải bài tập tự các em phải vẽ hình, ghi giả thiết-kết luận và tìm phơng phápgiải bài toán.Chứng minh một vấn đề mà bài toán yêu cầu- vì trớc đó những điều này các em chỉ vẽ hình theo hình vẽ sẵn và trình bày miệng cách giải,chứng minh bằng đo đạc , gấp hình và công nhận kiến thức- không chứng minh Do đó ,nếu giáo viên chúng ta không hớng dẫn các em tập suy luận chứng minh bài toán tốt thì các em gặp nhiều khó khăn ,dần dần một số em sẽ ngại- sợ học hình Lâu dần sẽ dẫn đến lời học và quên dần các kiến thức cơ bản của phần toán cơ sở quan trọng này
Vậy vấn đề đặt ra để hớng dẫn học sinh cách suy luận trong giải toán hình nh thế nào để đạt kết quả đối với HS lớp 7 là điều chúng ta cần tháo
gỡ ở đây tôi chỉ nêu những việc tôi đã đúc rút kinh nghiệm khi : "Hớng
dẫn học sinh lớp 7 tập suy luận trong giải bài tập ở chơngTam giác-Hình học 7 ".
Tôi đã tiến hành các bớc trình tự nh sau :
I Xác định rõ mục tiêu của tiết dạy luyện tập.
Mỗi tiết dạy_ chủ yếu ở đây đề cập đến các tiết luyện tập,thờng có một số lợng kiến thức cơ bản, trọng tâm để có một số kĩ năng, thao tác cụ thể phù hợp
Trang 4Để xác định rõ mục tiêu này chúng tôi thấy xác định rõ: học sinh phải nắm đợc kiến thức gì ? Kĩ năng nào ? Thái độ và nhận thức của học sinh với vấn đề đó ra sao ? ứng dụng của các kiến thức liên quan Đồng thời chúng ta cũng xác định rõ bài đó kiến thức ngắn hay dài, dễ hay khó đối với học sinh, vận dụng kiến thức vào bài tập nh thế nào, dạng bài suy luận, chứng minh ít hay nhiều Từ đó chúng tôi thiết kế các hoạt động, sử dụng các phơng pháp suy luận, phơng pháp chứng minh sao cho hợp lí- phù hợp với các đối tợng học sinh ở các lớp mình dạy nhằm đảm bảo giờ dạy
đạt hiệu quả và đảm bảo đủ thời gian
Trong phần này rõ ràng xác định mục tiêu chung song tôi vẫn phân loại với học sinh khá giỏi nâng cao một chút còn học sinh yếu thì mức độ yêu cầu giảm nhẹ hơn so với đối tợng trên
II Các cách hớng dẫn học sinh tập suy luận.
Khi đã xác định đợc mục tiêu tiết dạy, chúng ta cần xem xét để đạt
đợc mục tiêu ấy thì cần bao nhiêu kiến thức bổ trợ Khi đó ta cần nghiên cứu kĩ để chia thời gian cho các mảng kiến thức, dạng bài tập cần đề cập trong tiết dạy Từ đó thiết kế xây dựng phơng án thích hợp cho quá trình hớng dẫn bài tập cho học sinh hợp lí Phân loại rõ các bài toán suy luận Cách suy luận nh thế nào Căn cứ của suy luận là mảng kiến thức nào đã học? Sắp xếp trình tự các bớc suy luận ra sao- Cách trình bày bài chứng minh nh thế nào Từ đó ta có phơng pháp hớng dẫn học sinh phù hợp Th-ờng thTh-ờng trong cấp THCS khi hớng dẫn học sinh giải toán chứng minh hình học tôi hay dùng phơng pháp hớng dẫn học sinh suy luận theo hớng phân tích đi lên
Tuỳ từng dạng bài toán mà tôi lựa chọn các cách hớng dẫn học sinh suy luận sao cho phù hợp nhất, và tôi đã đi theo một số hớng sau:
Trớc tiên ta phải phân loại bài tập, tuỳ từng dạng bài tập mà có cách hớng dẫn học sinh sao cho phù hợp
1 Dạng bài tập củng cố lí thuyết
Dạng bài tập này có thể dùng ở các tiết dạy lí thuyết, luyện tập hay ôn tập chơng Thời gian dành cho dạng bài tập này có thể nhiều hay ít do đó
mà ta có thể dùng phiéu học tập hoặc bảng phụ để cho học sinh làm Dạng phiếu học tập có thể là phiếu điền khuyết, phiếu học tập đúng hay sai, bài tập trắc nghiệm sắp xếp lại lời giải
Tác dụng của dạng bài tập này là củng cố lí thuyết một cách từ đơn giản đến phức tạp, từ dễ đến khó với mức độ tăng dần Nghĩa là đa vào tiết học đó - các tiết lí thuyết học định nghĩa , định lí thì đa ra các mệnh đề để học sinh chọn đúng-sai , hoặc điền từ , cụm từ thích hợp để đợc mệnh đề
đúng Hoặc đa ra một vế của kết luận điền vế còn lại ;đa ra khẳng định
điền căn cứ ,đa ra kết luận điền điều kiện để có kết luận đúng và cách viết
Trang 5khác tơng đơng với điều kiện và kết luận đã có; hoặc đa ra kết luận điền
điều kiện cần có và vẽ hình minh hoạ Ví dụ :
1.1 Để củng cố kiến thức về hai tam giác bằng nhau ta có thể đa bảng phụ hoặc phiếu học tập dạng sau:
Điền vào “ ” các kiến thức có thể có để đợc bảng kiến thức đúng về tam giác bằng nhau :
Điều kiện cần Kết luận Cách viết khác
AB =A’B’
Aˆ = Aˆ'
∆ABC = ∆A’B’C’
∆ACB = ∆ A’C’B’
MN = XY
P = Z
∆M = ∆X
1.2 Để củng cố 3 trờng hợp bằng nhau của tam giác ta có bảng sau: Điều kiện cần Kết luận Hình vẽ minh hoạ
∆ABC =∆MNP (c.c.c)
∆MNP = ∆XYZ (c.g.c)
∆ABC = ∆MNQ (g.c.g)
1.3.Luyện tập về hai tam giác bằng nhau trên những hình vẽ đã vẽ sẵn : các dạng bài tập này đã cho sẵn hình vẽ và một số yếu tố cụ thể.Học
sinh phát hiện suy nghĩ ,chọn các cặp tam giác bằng nhau và giải thích
đ-ợc vì sao có kết luận đó.Dạng bài tập này giúp các em phát hiện nhanh
Trang 6những kiến thức đã học đợc áp dụng vào bài tập Đây là dạng bài tập bổ trợ rất hữu ích cho học sinh chứng minh suy luận Học sinh làm thành thạo loại bài tập này thì các em sẽ dễ dàng giải đợc các bài tập chứng minh sau này Khi đọc đề bài xong ,vẽ đợc hình ,nhìn vào hình vẽ là các em có thể
dự đoán các phơng pháp chứng minh của bài toán Hoặc từ đó các em lựa chọn đợc câu khẳng định đúng- sai ở một số bài toán trắc nghiệm chọn câu trả lời Đúng- Sai,
Ví dụ: Cho các hình vẽ sau hãy chỉ ra các cặp tam giác bằng nhau và giải thích vì sao?
Từ đó việc lựa chọn các câu khẳng định đúng hay sai trong bài tập sau
là rất đơn giản
Bài tập : Các khẳng định sau đúng hay sai :
1.Tam giác ABC và tam giác DEF có AB =DF ;BC =FE ; AC = DE thì ∆ABC = ∆DEF ( c.c.c )
2.Tam giác MNI và tam giác M’N’I’ có MI = M’I’ ; M = M’ và
I = I’ thì ∆MNI = ∆M’N’I’ ( g.c.g )
3.Tam giác MNP và tam giác EFQ có MN = EF , P = Q và NP = FQ thì ∆MNP = ∆EFQ ( c.g.c )
Từ phiếu học tập trên ,tôi nâng dần lên loại bài tập trắc nghiệm điền khuyết để hoàn chỉnh bài giải Ví dụ :
Cho ∆ABC = ∆DEF Biết A= 55o ; B= 75o
Tính các góc còn lại của mỗi tam giác
Một bạn đã giải bài toán nhng bị ma ớt mờ mất một số chỗ
Em hãy điền vào chỗ mờ “ ” giúp bạn hoàn chỉnh bài giải
Giải :
Từ giả thiết cho ∆ABC = ∆DEF có:
Aˆ = và Eˆ =
Theo định nghĩa hai tam giác bằng nhau, ta có:
Trang 7Dˆ = = ( 2 góc tơng ứng)
Bˆ = = ( )
Trong ∆ABC có Aˆ + Bˆ + =1800+ (định lí )
=> Cˆ = 180 0 - ( + ) =
Vậy = Cˆ =
Rồi từ dạng bài tập điền khuyết này chuyển sang dạng bài tập sắp xếp lại lời giải giúp học sinh kỹ năng hoàn thiện bài toán chứng minh hình học
Ví dụ : Bài tập 18 ( SGK_ Toán 7, tập1- trang114)
Xét bài toán: ∆AMB và ∆ANB có MA=MB; NA=NB (hình 71) Chứng minh rằng: A MˆN =B MˆN
Hình 71
1 Hãy ghi GT_KL của bài toán
2 Hãy sắp xếp 4 câu sau đây một cách hợp lí để giải bài toán trên:
a. Do đó ∆AMN = ∆BMN (c.c.c)
b. MN: cạnh chung
MA = MB ( gt )
NA = NB ( gt )
c. Suy ra A MˆN =B MˆN ( 2 góc tơng ứng )
d ∆AMB và ∆ANB có
Bài giải :
Thứ tự các bớc là: d ; b ; a ; c
Từ dạng bài tập điền khuyết đó nâng dần học sinh biết nhận xét lời giải bài toán đúng hay sai Và nếu sai thì biết sửa lại cho đúng
Ví dụ: Bài tập 57 ( SGK- Toán 7, tập1- tr ang 131+132)
Cho bài toán: “ ∆ABC có AB = 8, AC = 17, BC = 15 có phải là tam giác vuông hay không?” Bạn Tâm đã giải bài toán đó nh sau:
AB2 + AC2 = 82 + 172 = 64 + 289 = 353
BC2 = 152= 225
Do 353 ≠ 225 nên AB2 + AC2 ≠ BC2
Vậy ∆ABC không phải là tam giác vuông
Lời giải trên đúng hay sai? Nếu sai hãy sửa lại cho đúng
Qua đây củng cố cho các em định lí Pitago đảo
Trang 82.Dạng bài tập áp dụng và luyện tập.
ở chơng Tam giác các bài tập chủ yếu củng cố ba nội dung kiến thức cơ bản đã nêu ở phần đầu Nhng bài tập luyện tập chính vẫn là các kiến thức về hai tam giác bằng nhau- Định lí Pi-Ta-Go và một số dạng tam giác
đặc biệt
Dạng bài tập này có thể đòi hỏi trực tiếp chứng minh tam giác bằng nhau, tam giác là tam giác gì, sử dụng định lí Pi ta go thuận để tính toán
độ dài các cạnh tam giác vuông khi biết một số yếu tố về cạnh của nó Hoặc hỏi gián tiếp: chứng minh hai đờng thẳng song song, hai góc bằng nhau, hai cạnh bằng nhau, so sánh hai cạnh, hai góc , thông qua việc phải ghép các yếu tố đó vào để chứng minh hai tam giác bằng nhau Hoặc dùng định lí Pi ta go đảo để nhận biết một tam giác vuông
Các bài tập ở dạng này đòi hỏi học sinh phải có kĩ năng về hình, ghi GT- KL, nắm vững các kiến thức cơ bản đã học để tìm lời giải - Trình bày bài giải là trình bày tờng minh một đề toán- hình học: Chứng minh bằng suy luận hình học đa các khẳng định có căn cứ là các kiến thức định nghĩa, định lí, tiên đề, đã học
Để hớng dẫn học sinh giải dạng bài toán này tôi thờng hay hớng dẫn học sinh suy luận theo hớng phân tích đi lên Hình thành hệ thống câu hỏi phù hợp trong quá trình dẫn dắt học sinh suy luận Khi hớng dẫn tôi đã dùng phơng pháp phát hiện và giải quyết vấn đề dới hình thức vấn đáp Hoặc hớng dẫn học sinh phát hiện và giải quyết vấn đề bắng cách trình bày kiến thức theo quy trình tìm tòi dự đoán cách giải tuỳ theo mức độ bài toán đối với các đối tợng học sinh
Ví dụ:
Bài tập 1: Cho ∆ABC có Aˆ =600 Các tia phân giác của các góc B,C cắt nhau ở I và cắt AC ; AB theo thứ tự ở D; E
Chứng minh rằng ID= IE
Đối với bài này giáo viên hớng dẫn và cùng vẽ hình với học sinh Cho học sinh tự ghi GT_KL
Giáo viên hớng dẫn học sinh phân tích đề bài
? Từ phân giác Bˆ và Cˆ nhắc ta về điều gì
? Nêu tính chất của tia phân giác của góc
? Để chứng minh hai đoạn thẳng bằng nhau ta thờng làm nh thế nào
? Để chứng minh ID = IE ta có thể đa về chứng minh hai tam giác nào bằng nhau không?
Kẻ đờng phụ tạo ra các cặp tam giác bằng nhau trong đó có liên quan
đến ID , IE
Lu ý gì về điểm I đối với cạnh BC, BA, CA của ∆ABC
Từ đó hớng dẫn học sinh kẻ phân giác IK của B ˆ I C
Trang 9Và hớng dẫn học sinh tìm cách giải.
A
- Kẻ phân giác IK của B ˆ I C
⇑
I = I (tính chất tia phân giác
của góc )
? Từ Aˆ =600 => Bˆ + Cˆ = ?
Nhận xét về góc I và I với tổng
Bˆ + Cˆ
? Tính số đo của góc BIC dựa vào
đâu Từ đó HS sẽ đi tìm lời giải
của bài toán
Cách giải:
Kẻ tia phân giác IK của BIC , ta có:
I = I (tính chất tia phân giác của góc )
Từ giả thiết cho ∆ABC có
Aˆ =600 => Bˆ + Cˆ = 1200
(định lí tổng3 góc của tam giác )
Mà Bˆ = Bˆ (GT)
Cˆ = Cˆ (GT) Suy ra Bˆ + Cˆ = 600
=> BIC = 1200
Theo tính chất góc ngoài của tam giác có : I = I = Bˆ + Cˆ =
600
Từ đó ta có
I = I = I = I Xét ∆IEB và ∆IKB có :
Bˆ = Bˆ ; cạnh BI chung ;
I = I => ∆IEB = ∆IKB (g.c.g)
Suy ra : IE = IK Tơng tự : ∆IDC = ∆IKC (g.c.g) Suy ra : ID = IK
Do đó : ID =IE = IK Vậy : ID = IE
Bài tập 2
Cho tam giác ABC cân tại A Lâý điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD = AE
a) So sánh góc ABD và góc ACE
Trang 10b) Gọi I là giao điểm của BD và CE Tam giác IBC là tam giác gì ? Vì sao ?
Đối với bài này GV dùng bảng phụ hoặc máy chiếu đa đề bài ,HS tự
vẽ hình ,ghi GT và KL bài toán
∆ABC (AB = AC)
D AC ; E AB
AD = ÂE
BD cắt CE tại I
a).So sánh ABD và ACE
b) ∆IBC là tam giác gì ? Vì sao ?
Sau đó GV cùng HS phân tích tìm lời giải
Để so sánh ABD và ACE em có dự đoán gì?
Từ đó HS sẽ có dự đoán hai góc bằng nhau Và phân tích :
Cần chứng minh : ABD = ACE hay B = C <= ∆ABD = ∆ACE (c.g.c) <= góc A chung ; AE = AD ; AB = AC (gt)
Có mấy cách giải ?Hãy tìm câu trả lời
Giáo viên đa ra một cách giải :
a) Vì E AB (gt) => AE + EB = AB
Vì D AC (gt) => AD + DC = AC
Mà AB = AC ; AE = AD (gt) Suy ra : EB = DC
Xét ∆DBC và ∆ECB có : BC là cạnh chung ; BCD = CBE (góc
đáy của tam giác cân ) ; DC = EB
Vậy : ∆DBC = ∆ECB (c.g.c ) => B = C
Hay ABD = ACE
b) Từ chứng minh trên ta có B = C => B = C
Vậy tam giác IBC là tam giác cân
Nếu em chứng minh theo cách 1 thì câu b chứng minh nh thế nào ?
Qua bài toán trên ta có thể khai thác bài toán :
Nếu nối ED , em có thể đặt thêm những câu hỏi nào ? Chứng minh
Từ đấy phát huy tính chủ động ,tích cực,chủ động của HS Có thể gợi ý cho HS đa ra điều kiện chứng minh :
-Tam giác AED cân
-Tam giác EIB bằng ∆ DIC
Bài tập 3-Bài tập 91 (sách bài tập- Trang 109).
Cho các số 5 ; 8 ; 9 ; 12 ; 13 ; 15 ; 17 Hãy chọn ra các bộ số có thể
là độ dài 3 cạnh của một tam giác vuông