clc clf hold on grid on % ve mat cau phan tren phi=linspace(0,2pi,30); theta=linspace(0,pi4,30); p t=meshgrid(phi,theta); x=sqrt(2)sin(t).cos(p); y=sqrt(2)sin(t).sin(p); z=sqrt(2)cos(t); mesh(x,y,z,FaceColor,c,FaceAlpha,0.5,EdgeColor,non); % ve mat cau phan duoi theta=linspace(3pi4,pi,30); p t=meshgrid(phi,theta); x=sqrt(2)sin(t).cos(p); y=sqrt(2)sin(t).sin(p); z=sqrt(2)cos(t); mesh(x,y,z,FaceColor,c,FaceAlpha,0.5,EdgeColor,non);
Trang 1(CODE) BTL MatLab môn giải tích 2- HK152 2.2 Vẽ hình của một trong các vật thể dưới đây
V 1: x2 + y2 ≤ 1,x2 + y2 + z2 ≤ 2
clc
clf
% ve mat cau phan tren
phi=linspace(0,2*pi,30);
theta=linspace(0,pi/4,30);
[p t]=meshgrid(phi,theta);
x=sqrt(2)*sin(t).*cos(p);
y=sqrt(2)*sin(t).*sin(p);
z=sqrt(2)*cos(t);
% ve mat cau phan duoi
theta=linspace(3*pi/4,pi,30);
[p t]=meshgrid(phi,theta);
x=sqrt(2)*sin(t).*cos(p);
y=sqrt(2)*sin(t).*sin(p);
z=sqrt(2)*cos(t);
% ve mat tru
z=linspace(-1,1,30);
[z phi]=meshgrid(z,phi);
r=1;
x=r.*cos(phi);y=r.*sin(phi);
% ve giao tuyen
title('x^2+y^2<=1, x^2+y^2+z^2<=2')
V 2: 0 ≤ z ≤px2 + y2,x2 + y2 + z2 ≤ 2
clc
clf
title('x^2+y^2+z^2<=2,0=<z<=sqrt(x^2+y^2)')
%Ve non z=sqrt(x^2+y^2) phan nam trong mat cau
phi=linspace(0,2*pi,30);
r=linspace(0,1,30);
[r phi]=meshgrid(r,phi);
x=r.*cos(phi);
Trang 2z=sqrt(x.^2+y.^2);
%Ve mat Cau dung toa do cau
phi=linspace(0,2*pi,30);
theta=linspace(pi/4,pi/2,30);
[p t]=meshgrid(phi,theta);
x=sqrt(2)*sin(t).*cos(p);
y=sqrt(2)*sin(t).*sin(p);
z=sqrt(2)*cos(t);
%Ve 2 giao tuyen trong 2 mp z=0, z=1
V 3: x2 + y2 ≤ 2y,x2 + y2 + z2 ≤ 4
clc
clf
phi=linspace(0,2*pi,50);
r=linspace(0,1,50);
[r ph]=meshgrid(r,phi);
% Phan mat cau
x=r.*cos(ph);
y=r.*sin(ph)+1;
z1=sqrt(4-x.^2-y.^2);z2=-sqrt(4-x.^2-y.^2)
%Phan mat tru
x=cos(ph);y=sin(ph)+1;z1=r.*sqrt(2-2*sin(ph));z2=-r.*sqrt(2-2*sin(ph));
xlabel('x')
ylabel('y')
zlabel('z')
view(105,20)
V 4: y = 5,y = 1 + x2,z = 0,z + x = 2
√ √
clc
clf
% ve mat z=0 va z=2-x
x=linspace(-2,2,200);
y=linspace(1,5,200);
[x y]=meshgrid(x,y);
z1=0*x;z2=2-x;
Trang 3for j=1:length(y)
z1(i,j)=NaN;z2(i,j)=NaN;
end
end
% ve mat y=5 va y=1+x^2
x=linspace(-2,2,200);
z=linspace(0,4,200);
[x z]=meshgrid(x,z);
y1=5+0*x;
y2=1+x.^2;
y1(i,j)=NaN;y2(i,j)=NaN;
end
% ve giao tuyen
x=linspace(-2,2,200);
y=linspace(1,5,200);
y1=1+x.^2;
z1=0*x;z2=2-x;
V 5: y = x,y = 2 x,z = 0,x + z = 6
% vat gioi han boi y=sqrt(x), y=2*sqrt(x), z=0, x+z=6
clc
clf
%Ve mat y=sqrt(x), y=2*sqrt(x)
x=linspace(0,6,300);z=linspace(0,6,300);
[x z]=meshgrid(x,z);
y1=sqrt(x); y2=2*sqrt(x);
y1(i,j)=NaN;y2(i,j)=NaN;
end
%Ve mat z=0, x+z=6
x=linspace(0,6,300);y=linspace(0,2*sqrt(6),300);
[x y]=meshgrid(x,y);
Trang 4z1=0*x; z2=6-x;
z1(i,j)=NaN;z2(i,j)=NaN;
end
% ve giao tuyen
x=linspace(0,6,300);
y1=sqrt(x);y2=2*sqrt(x);
z1=0*x;z2=6-x;
V 6: y = x,y = x2,x2 + y2 = z,x2 + y2 = 2z
% ve mat gioi han boi y=x, y=x^2,x^2+y^2=z,x^2+y^2=2z
clc
clf
%Ve mat y=x, y=x.^2
x=linspace(0,1,200);z=linspace(0,2,200);
[x z]=meshgrid(x,z);
y1=x;
y1(i,j)=NaN;
end
y2=x.^2;
y2(i,j)=NaN;
end
% ve mat z=x^2+y^2,z=(x.^2+y.^2)/2;
x=linspace(0,1,200);
y=linspace(0,1,200);
[x y]=meshgrid(x,y);
z1=x.^2+y.^2; z2=(x.^2+y.^2)/2;
Trang 5for j=1:length(y)
z1(i,j)=NaN;z2(i,j)=NaN;
end
% ve duong giao tuyen
x=linspace(0,1,1000);z=linspace(0,2,1000);y=linspace(0,1,1000);
x1=1+0.*x;
y1=x; y2=x.^2; y3=1+0.*x;
z1=x.^2+y1.^2; z2=(x.^2+y1.^2)/2;z3=x.^2+y2.^2; z4=(x.^2+y2.^2)/2; z5=x.^2+y3.^3;
V 7: z = 0,z = x2 + y2,x2 + y2 = 1
% vat gioi han boi z=0,x^+y^1=1,z=x^2+y^2;
clc
clf
%Ve mat z=0, z=x^2+y^2;
phi=linspace(0,2*pi,30);
r=linspace(0,1,30);
[r phi]=meshgrid(r,phi);
x=r.*cos(phi);
y=r.*sin(phi);
z1=0*x; z2=x.^2+y.^2;
% ve mat tru x^2+y^2=1
phi=linspace(0,2*pi,30);z=linspace(0,1,30);
[phi z]=meshgrid(phi,z);
x=cos(phi);y=sin(phi);
hold on;
phi=linspace(0,2*pi,30);
V 8: z = 0,z = px2 + y2,x2 + y2 = 4
% vat gioi han boi z=0,x^+y^4=1,z=sqrt(x^2+y^2);
clc
Trang 6%Ve mat z=0, z=sqrt(x^2+y^2);
phi=linspace(0,2*pi,30);
r=linspace(0,2,30);
[r phi]=meshgrid(r,phi);
x=r.*cos(phi);
y=r.*sin(phi);
z1=0*x; z2=sqrt(x.^2+y.^2);
% ve mat tru x^2+y^2=4
phi=linspace(0,2*pi,30);z=linspace(0,2,30);
[phi z]=meshgrid(phi,z);
x=2*cos(phi);y=2*sin(phi);
% ve giao tuyen
phi=linspace(0,2*pi,30);
V 9: z = 0,y = x2,y + z = 4
√
% vat gioi han boi z=0,y+z=4,y=x^2;
clc
clf
%Ve mat z=0, y+z=4;
x=linspace(-2,2,200);
y=linspace(0,4,200);
[x y]=meshgrid(x,y);
z1=0*x;z2=4-y;
if y(i,j)<x(i,j)^2
z1(i,j)=NaN;z2(i,j)=NaN;
end
end
% ve mat y=x^2;
x=linspace(-2,2,200);
z=linspace(0,4,200);
[x z]=meshgrid(x,z);
y=x.^2;
y(i,j)=NaN;
end
Trang 7% ve giao tuyen
x=linspace(-2,2,200);
y1=x.^2;
z1=0*x;z2=4-y1;
V 10: z = 0,y = 0,y = x,x + z = 4
clc
clf
% ve mat z=0 va z=4-x
x=linspace(0,4,200);
y=linspace(0,2,200);
[x y]=meshgrid(x,y);
z1=0*x;z2=4-x;
z1(i,j)=NaN;z2(i,j)=NaN;
end
end
% ve mat y=0 va y=sqrt(x)
x=linspace(0,4,200);
z=linspace(0,4,200);
[x z]=meshgrid(x,z);
y1=0*x;
y2=sqrt(x);
y1(i,j)=NaN;y2(i,j)=NaN;
end
% ve giao tuyen
x=linspace(0,4,200);
y1=sqrt(x);
z1=0*x;z2=4-x;
V 11: x = 0,y = 0,z = 0,y2 = 2z,2x + 3y = 12
Trang 8clf
% ve mat z=0, 2z=y^2
x=linspace(0,6,200);
y=linspace(0,12/3,200);
[x y]=meshgrid(x,y);
z1=0*x;z2=y.^2/2;
z1(i,j)=NaN;z2(i,j)=NaN;
end
end
hold on;
% ve mat y=0 va y=(12-2*x)/3
x=linspace(0,6,200);
z=linspace(0,8,200);
[x z]=meshgrid(x,z);
y=(12-2.*x)/3;
y(i,j)=NaN;
end
% ve giao tuyen
x=linspace(0,6,200);
x1=0*x;
y1=(12-2*x)/3;y2=linspace(0,4,200);
z1=y1.^2/2;z2=y2.^2/2;
V 12:
% ve mat gioi han boi y^2+z^2=2*x, x^2+y^2+z^2=5/4
clc
clf
Trang 9grid on
% ve mat x^2+y^2+z^2=5/4
phi=linspace(0,2*pi,1000);
theta=linspace(0,pi,1000);
[p ,t]=meshgrid(phi,theta);
x=(sqrt(5)/2)*sin(t).*cos(p);
y=(sqrt(5)/2)*sin(t).*sin(p);
z=(sqrt(5)/2)*cos(t);
z(i,j)=NaN;
end
% ve mat y^2+z^2=2*x
z=linspace(-2,2,1000);
y=linspace(-2,2,1000);
[y, z]=meshgrid(y,z);
x =(y.^2+z.^2)/2;
x(i,j)=NaN;
end
% ve duong giao tuyen
phi=linspace(0,2*pi,1000);
z=(1).*cos(phi);
y=(1).*sin(phi);
x=1/2+0.*phi;
V 13: x2 + y2 = 4,x + y + z = 2,z = 0
%Vat the gioi han boi x^2+y^2=4, x+y+z=2,z=0
clc
clf
% ve mat x^2+y^2=4;
x=linspace(-2,2,500);
z=linspace(0,2+2*sqrt(2),500);
[x z]=meshgrid(x,z);
y1=sqrt(4-x.^2);
y1(i,j)=NaN;
end
y2=-sqrt(4-x.^2);
Trang 10for j=1:length(z)
y2(i,j)=NaN;
end
%ve mat z=0 va z=2-x-y
x=linspace(-2,2,500);
y=linspace(-2,2,500);
[x y]=meshgrid(x,y);
z1=0*x;z2=2-x-y;
z1(i,j)=NaN;z2(i,j)=NaN;
end
end
% ve giao tuyen
t=linspace(pi/2,2*pi,30);
V 14: z = −px2 + y2,z = 6 − x2 − y2
%vat the gioi han boi z=-sqrt(x^2+y^2), z=6-x^2-y^2
clc
clf
% ve mat z=6-x^2-y^2
x=linspace(-3,3,500);
y=linspace(-3,3,500);
[x, y]=meshgrid(x,y);
z1=6-x.^2-y.^2; z2=-sqrt(x.^2+y.^2);
z2(i,j)=NaN;z1(i,j)=NaN;
end
%ve duong giao tuyen
phi=linspace(0,2*pi,500);
x = 3*cos(phi);
y = 3*sin(phi);
z = -3+0.*phi;
Trang 11V 15: x2 + 4y2 = 4,z = 0,x + z = 2
%Vat the gioi han boi x^2+4*y^2=4, x+z=2,z=0
clc
clf
% ve mat x^2+4y^2=4;
x=linspace(-2,2,200);
z=linspace(0,4,200);
[x z]=meshgrid(x,z);
y1=sqrt(4-x.^2)/2;y2=-sqrt(4-x.^2)/2;
y1(i,j)=NaN;y2(i,j)=NaN;
end
%ve mat z=0 va z=2-x
x=linspace(-2,2,200);
y=linspace(-1,1,200);
[x y]=meshgrid(x,y);
z1=0*x;z2=2-x;
z1(i,j)=NaN;z2(i,j)=NaN;
end
end
% ve giao tuyen
t=linspace(0,2*pi,100);
V 16: x = 0,y = 0,3x + y = 3,3x + 2y = 6,x + y + z = 3
√
%Vat the gioi han boi x=0, y=0, 3*x+y=3, 3*x+2*y=6, x+y+z=3
clc
clf
Trang 12% ve mat y=0, 3*x+y=3, 3*x+2*y=6
x=linspace(0,2,500);
z=linspace(0,4,500);
[x, z]=meshgrid(x,z);
y1=0.*x; y2=3-3.*x; y3=(6-3.*x)/2;
y1(i,j)=NaN;
y2(i,j)=NaN;
y3(i,j)=NaN;
end
% ve mat x=0
z=linspace(0,4,500); x=linspace(0,2,500);
[x, z]=meshgrid(x,z);
y2=3-3.*x; x1=0.*x;
y2(i,j)=NaN;
end
% ve mat x+y+z=3
x=linspace(0,2,500);y=linspace(0,3,500);
[x, y]=meshgrid(x,y);
z1=3-x-y; z2=0.*x;
z1(i,j)=NaN;z2(i,j)=NaN;
end
V 17: x2 + y2 + z2 = 4,y = x,y = x 3 phần ứng với x ≥ 0,y ≥ 0
%Vat the gioi han boi x^2+y^2+x^2=4, y=x,y=sqrt(3).x
clc
clf
% ve mat y=x,y=sqrt(3)*x
x=linspace(0,2,200);
z=linspace(-2,2,200);
[x z]=meshgrid(x,z);
Trang 13y1(i,j)=NaN;
end
y2=sqrt(3)*x;
y2(i,j)=NaN;
end
%ve mat x^2+y^2+z^2=4
phi=linspace(pi/4,pi/3,30);
theta=linspace(0,pi,30);
[p t]=meshgrid(phi,theta);
x=2*sin(t).*cos(p);
y=2*sin(t).*sin(p);
z=2*cos(t);
% ve giao tuyen
x1=linspace(0,sqrt(2),200);x2=linspace(0,1,200);
y1=x1;y2=sqrt(3)*x2
z1=sqrt(4-x1.^2-y1.^2);z2=sqrt(4-x2.^2-y2.^2);z3=-sqrt(4-x1.^2-y1.^2);z4=-sqrt(4-x2.^2-y2.^2);
%Vat the gioi han boi z=0,z=4-x^2-y^2;y=x,y=x/sqrt(3)
clc
clf
% ve mat y=x,y=x/sqrt(3)
x=linspace(0,2,300);
z=linspace(0,4,300);
[x z]=meshgrid(x,z);
y1=x;
y1(i,j)=NaN;
end
y2=x/sqrt(3);
Trang 14for j=1:length(z)
y2(i,j)=NaN;
end
%ve mat z=4-x^2+y^2
x=linspace(0,2,300);
y=linspace(0,2,300);
[x y]=meshgrid(x,y);
z1=0*x;
z1(i,j)=NaN;
end
z2=4-x.^2-y.^2;
z2(i,j)=NaN;
end
% ve giao tuyen
x1=linspace(0,sqrt(2),200);x2=linspace(0,sqrt(3),200);
y1=x1;y2=x2/sqrt(3);
z1=4-x1.^2-y1.^2;z2=4-x2.^2-y2.^2;
p=linspace(pi/6,pi/4,30);
V 19: z = 0,z = x2,x2 + y2 = 4
% vat the gioi han boi z = 0, z = x2, x2 + y2 = 4
clc
clf
% ve mat x^2+y^2<=1
r=linspace(0,4,30);
phi=linspace(0,2*pi,30);
[r, phi]= meshgrid(r,phi);
x = 2*cos(phi);
y = 2*sin(phi);
z = r ;
% ve? z=x^2
Trang 15[x, y]=meshgrid(x,y);
z = x.^2;
z(i,j)=NaN;
end
V 20: 1 ≤ x2 + y2 + z2 ≤ 4,x ≥ 0
% vat gioi han boi 1<=x^2+y^2+z^2<=4,x>=0
clc
clf
phi=linspace(0,2*pi,30);
theta=linspace(0,pi/2,30);
[p t]=meshgrid(phi,theta);
% ve mat x^2+y^2+z^2=4
z=2*sin(t).*cos(p);
x=2*sin(t).*sin(p);
y=2*cos(t);
%x^2+y^2+z^2=1
z=sin(t).*cos(p);
x=sin(t).*sin(p);
y=cos(t);
% ve mat day yz
phi=linspace(0,2*pi,30);
r=linspace(1,2,30);
[phi r]=meshgrid(phi,r);
x=r.*cos(phi);
z=r.*sin(phi);
y=0*phi;
% ve giao tuyen
phi=linspace(0,2*pi,30);
V 21: x2 + y2 + z2 ≤ 4,x + y le0
V 22: x = 0,y = 0,z = 0,y = 3,x + z = 2
Trang 16% vat gioi han boi x=0,y=0,z=0,y=3,x+z=2;
clc
clf
%Ve mat z=0,z=2-x
x=linspace(0,2,200);
y=linspace(0,3,200);
[x y]=meshgrid(x,y);
z1=0*x;z2=2-x;
% ve mat y=3;y=0;x=0
x=linspace(0,2,200);
z=linspace(0,2,200);
[x z]=meshgrid(x,z);
y1=3+0*x;y2=0*x;
y1(i,j)=NaN;y2(i,j)=NaN;
end
% ve mat x=0
y=linspace(0,3,200);
z=linspace(0,2,200);
[y z]=meshgrid(y,z);
x=0*y
% ve giao tuyen
V 23: 0 ≤ z ≤p2 − x2 − y2,x2 + y2 ≥ 1
clc
clf
Trang 17%Ve nua cau z=sqrt(2-x^2+y^2),z=0
phi=linspace(0,2*pi,50);
r=linspace(0,1,50);
[r ph]=meshgrid(r,phi);
% Phan mat cau
x=r.*cos(ph);
y=r.*sin(ph);
z1=sqrt(2-x.^2-y.^2);z2=0*x;
% phan mat tru
phi=linspace(0,2*pi,50);
z=linspace(0,1,50);
[phi z]=meshgrid(phi,z);
x=cos(phi);y=sin(phi);
% ve giao tuyen
phi=linspace(0,2*pi,50);
V 24: x2 + z2 = 1,x2 + y2 = 1
%Vat the gioi han boi x^2+y^2=1, x^2+z^2=1
clc
clf
r=linspace(0,1,30);phi=linspace(0,2*pi,30);
[r phi]=meshgrid(r,phi);
%Mat x^2+z^2=1
x=r.*cos(phi);y=r.*sin(phi);
z1=sqrt(1-x.^2);z2=-sqrt(1-x.^2);
%Mat x^2+y^2=1
x=r.*cos(phi);z=r.*sin(phi);
y1=sqrt(1-x.^2);y2=-sqrt(1-x.^2);
% ve duong giao tuyen
t=linspace(0,2*pi,50);
Trang 18V 25: x2 + z2 = 1,x2 + z2 = 4,y = −1,y = 3
% ve x2 + z2 = 1, x2 + z2 = 4, y = ?1, y = 3
clc
clf
% ve mat x^2+y^2=1
r=linspace(-1,3,30);
phi=linspace(0,2*pi,30);
[r, phi]= meshgrid(r,phi);
x = cos(phi);
z = sin(phi);
y = r ;
% ve mat x^2+y^2=1
r=linspace(-1,3,30);
phi=linspace(0,2*pi,30);
[r, phi]= meshgrid(r,phi);
x = 2*cos(phi);
z = 2*sin(phi);
y = r ;
% y=-1;y=3
% y=3
x=linspace(-2,2,500);z=linspace(-2,2,500);
[x, z]=meshgrid(x,z);
y=3+0.*x;y1=-1+0.*x;
y(i,j)=NaN;y1(i,j)=NaN;
end