1. Trang chủ
  2. » Giáo án - Bài giảng

25 doan code ve hinh BTL giai tich2 2015

18 381 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 453,93 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

clc clf hold on grid on % ve mat cau phan tren phi=linspace(0,2pi,30); theta=linspace(0,pi4,30); p t=meshgrid(phi,theta); x=sqrt(2)sin(t).cos(p); y=sqrt(2)sin(t).sin(p); z=sqrt(2)cos(t); mesh(x,y,z,FaceColor,c,FaceAlpha,0.5,EdgeColor,non); % ve mat cau phan duoi theta=linspace(3pi4,pi,30); p t=meshgrid(phi,theta); x=sqrt(2)sin(t).cos(p); y=sqrt(2)sin(t).sin(p); z=sqrt(2)cos(t); mesh(x,y,z,FaceColor,c,FaceAlpha,0.5,EdgeColor,non);

Trang 1

(CODE) BTL MatLab môn giải tích 2- HK152 2.2 Vẽ hình của một trong các vật thể dưới đây

V 1: x2 + y2 ≤ 1,x2 + y2 + z2 ≤ 2

clc

clf

% ve mat cau phan tren

phi=linspace(0,2*pi,30);

theta=linspace(0,pi/4,30);

[p t]=meshgrid(phi,theta);

x=sqrt(2)*sin(t).*cos(p);

y=sqrt(2)*sin(t).*sin(p);

z=sqrt(2)*cos(t);

% ve mat cau phan duoi

theta=linspace(3*pi/4,pi,30);

[p t]=meshgrid(phi,theta);

x=sqrt(2)*sin(t).*cos(p);

y=sqrt(2)*sin(t).*sin(p);

z=sqrt(2)*cos(t);

% ve mat tru

z=linspace(-1,1,30);

[z phi]=meshgrid(z,phi);

r=1;

x=r.*cos(phi);y=r.*sin(phi);

% ve giao tuyen

title('x^2+y^2<=1, x^2+y^2+z^2<=2')

V 2: 0 ≤ z ≤px2 + y2,x2 + y2 + z2 ≤ 2

clc

clf

title('x^2+y^2+z^2<=2,0=<z<=sqrt(x^2+y^2)')

%Ve non z=sqrt(x^2+y^2) phan nam trong mat cau

phi=linspace(0,2*pi,30);

r=linspace(0,1,30);

[r phi]=meshgrid(r,phi);

x=r.*cos(phi);

Trang 2

z=sqrt(x.^2+y.^2);

%Ve mat Cau dung toa do cau

phi=linspace(0,2*pi,30);

theta=linspace(pi/4,pi/2,30);

[p t]=meshgrid(phi,theta);

x=sqrt(2)*sin(t).*cos(p);

y=sqrt(2)*sin(t).*sin(p);

z=sqrt(2)*cos(t);

%Ve 2 giao tuyen trong 2 mp z=0, z=1

V 3: x2 + y2 ≤ 2y,x2 + y2 + z2 ≤ 4

clc

clf

phi=linspace(0,2*pi,50);

r=linspace(0,1,50);

[r ph]=meshgrid(r,phi);

% Phan mat cau

x=r.*cos(ph);

y=r.*sin(ph)+1;

z1=sqrt(4-x.^2-y.^2);z2=-sqrt(4-x.^2-y.^2)

%Phan mat tru

x=cos(ph);y=sin(ph)+1;z1=r.*sqrt(2-2*sin(ph));z2=-r.*sqrt(2-2*sin(ph));

xlabel('x')

ylabel('y')

zlabel('z')

view(105,20)

V 4: y = 5,y = 1 + x2,z = 0,z + x = 2

√ √

clc

clf

% ve mat z=0 va z=2-x

x=linspace(-2,2,200);

y=linspace(1,5,200);

[x y]=meshgrid(x,y);

z1=0*x;z2=2-x;

Trang 3

for j=1:length(y)

z1(i,j)=NaN;z2(i,j)=NaN;

end

end

% ve mat y=5 va y=1+x^2

x=linspace(-2,2,200);

z=linspace(0,4,200);

[x z]=meshgrid(x,z);

y1=5+0*x;

y2=1+x.^2;

y1(i,j)=NaN;y2(i,j)=NaN;

end

% ve giao tuyen

x=linspace(-2,2,200);

y=linspace(1,5,200);

y1=1+x.^2;

z1=0*x;z2=2-x;

V 5: y = x,y = 2 x,z = 0,x + z = 6

% vat gioi han boi y=sqrt(x), y=2*sqrt(x), z=0, x+z=6

clc

clf

%Ve mat y=sqrt(x), y=2*sqrt(x)

x=linspace(0,6,300);z=linspace(0,6,300);

[x z]=meshgrid(x,z);

y1=sqrt(x); y2=2*sqrt(x);

y1(i,j)=NaN;y2(i,j)=NaN;

end

%Ve mat z=0, x+z=6

x=linspace(0,6,300);y=linspace(0,2*sqrt(6),300);

[x y]=meshgrid(x,y);

Trang 4

z1=0*x; z2=6-x;

z1(i,j)=NaN;z2(i,j)=NaN;

end

% ve giao tuyen

x=linspace(0,6,300);

y1=sqrt(x);y2=2*sqrt(x);

z1=0*x;z2=6-x;

V 6: y = x,y = x2,x2 + y2 = z,x2 + y2 = 2z

% ve mat gioi han boi y=x, y=x^2,x^2+y^2=z,x^2+y^2=2z

clc

clf

%Ve mat y=x, y=x.^2

x=linspace(0,1,200);z=linspace(0,2,200);

[x z]=meshgrid(x,z);

y1=x;

y1(i,j)=NaN;

end

y2=x.^2;

y2(i,j)=NaN;

end

% ve mat z=x^2+y^2,z=(x.^2+y.^2)/2;

x=linspace(0,1,200);

y=linspace(0,1,200);

[x y]=meshgrid(x,y);

z1=x.^2+y.^2; z2=(x.^2+y.^2)/2;

Trang 5

for j=1:length(y)

z1(i,j)=NaN;z2(i,j)=NaN;

end

% ve duong giao tuyen

x=linspace(0,1,1000);z=linspace(0,2,1000);y=linspace(0,1,1000);

x1=1+0.*x;

y1=x; y2=x.^2; y3=1+0.*x;

z1=x.^2+y1.^2; z2=(x.^2+y1.^2)/2;z3=x.^2+y2.^2; z4=(x.^2+y2.^2)/2; z5=x.^2+y3.^3;

V 7: z = 0,z = x2 + y2,x2 + y2 = 1

% vat gioi han boi z=0,x^+y^1=1,z=x^2+y^2;

clc

clf

%Ve mat z=0, z=x^2+y^2;

phi=linspace(0,2*pi,30);

r=linspace(0,1,30);

[r phi]=meshgrid(r,phi);

x=r.*cos(phi);

y=r.*sin(phi);

z1=0*x; z2=x.^2+y.^2;

% ve mat tru x^2+y^2=1

phi=linspace(0,2*pi,30);z=linspace(0,1,30);

[phi z]=meshgrid(phi,z);

x=cos(phi);y=sin(phi);

hold on;

phi=linspace(0,2*pi,30);

V 8: z = 0,z = px2 + y2,x2 + y2 = 4

% vat gioi han boi z=0,x^+y^4=1,z=sqrt(x^2+y^2);

clc

Trang 6

%Ve mat z=0, z=sqrt(x^2+y^2);

phi=linspace(0,2*pi,30);

r=linspace(0,2,30);

[r phi]=meshgrid(r,phi);

x=r.*cos(phi);

y=r.*sin(phi);

z1=0*x; z2=sqrt(x.^2+y.^2);

% ve mat tru x^2+y^2=4

phi=linspace(0,2*pi,30);z=linspace(0,2,30);

[phi z]=meshgrid(phi,z);

x=2*cos(phi);y=2*sin(phi);

% ve giao tuyen

phi=linspace(0,2*pi,30);

V 9: z = 0,y = x2,y + z = 4

% vat gioi han boi z=0,y+z=4,y=x^2;

clc

clf

%Ve mat z=0, y+z=4;

x=linspace(-2,2,200);

y=linspace(0,4,200);

[x y]=meshgrid(x,y);

z1=0*x;z2=4-y;

if y(i,j)<x(i,j)^2

z1(i,j)=NaN;z2(i,j)=NaN;

end

end

% ve mat y=x^2;

x=linspace(-2,2,200);

z=linspace(0,4,200);

[x z]=meshgrid(x,z);

y=x.^2;

y(i,j)=NaN;

end

Trang 7

% ve giao tuyen

x=linspace(-2,2,200);

y1=x.^2;

z1=0*x;z2=4-y1;

V 10: z = 0,y = 0,y = x,x + z = 4

clc

clf

% ve mat z=0 va z=4-x

x=linspace(0,4,200);

y=linspace(0,2,200);

[x y]=meshgrid(x,y);

z1=0*x;z2=4-x;

z1(i,j)=NaN;z2(i,j)=NaN;

end

end

% ve mat y=0 va y=sqrt(x)

x=linspace(0,4,200);

z=linspace(0,4,200);

[x z]=meshgrid(x,z);

y1=0*x;

y2=sqrt(x);

y1(i,j)=NaN;y2(i,j)=NaN;

end

% ve giao tuyen

x=linspace(0,4,200);

y1=sqrt(x);

z1=0*x;z2=4-x;

V 11: x = 0,y = 0,z = 0,y2 = 2z,2x + 3y = 12

Trang 8

clf

% ve mat z=0, 2z=y^2

x=linspace(0,6,200);

y=linspace(0,12/3,200);

[x y]=meshgrid(x,y);

z1=0*x;z2=y.^2/2;

z1(i,j)=NaN;z2(i,j)=NaN;

end

end

hold on;

% ve mat y=0 va y=(12-2*x)/3

x=linspace(0,6,200);

z=linspace(0,8,200);

[x z]=meshgrid(x,z);

y=(12-2.*x)/3;

y(i,j)=NaN;

end

% ve giao tuyen

x=linspace(0,6,200);

x1=0*x;

y1=(12-2*x)/3;y2=linspace(0,4,200);

z1=y1.^2/2;z2=y2.^2/2;

V 12:

% ve mat gioi han boi y^2+z^2=2*x, x^2+y^2+z^2=5/4

clc

clf

Trang 9

grid on

% ve mat x^2+y^2+z^2=5/4

phi=linspace(0,2*pi,1000);

theta=linspace(0,pi,1000);

[p ,t]=meshgrid(phi,theta);

x=(sqrt(5)/2)*sin(t).*cos(p);

y=(sqrt(5)/2)*sin(t).*sin(p);

z=(sqrt(5)/2)*cos(t);

z(i,j)=NaN;

end

% ve mat y^2+z^2=2*x

z=linspace(-2,2,1000);

y=linspace(-2,2,1000);

[y, z]=meshgrid(y,z);

x =(y.^2+z.^2)/2;

x(i,j)=NaN;

end

% ve duong giao tuyen

phi=linspace(0,2*pi,1000);

z=(1).*cos(phi);

y=(1).*sin(phi);

x=1/2+0.*phi;

V 13: x2 + y2 = 4,x + y + z = 2,z = 0

%Vat the gioi han boi x^2+y^2=4, x+y+z=2,z=0

clc

clf

% ve mat x^2+y^2=4;

x=linspace(-2,2,500);

z=linspace(0,2+2*sqrt(2),500);

[x z]=meshgrid(x,z);

y1=sqrt(4-x.^2);

y1(i,j)=NaN;

end

y2=-sqrt(4-x.^2);

Trang 10

for j=1:length(z)

y2(i,j)=NaN;

end

%ve mat z=0 va z=2-x-y

x=linspace(-2,2,500);

y=linspace(-2,2,500);

[x y]=meshgrid(x,y);

z1=0*x;z2=2-x-y;

z1(i,j)=NaN;z2(i,j)=NaN;

end

end

% ve giao tuyen

t=linspace(pi/2,2*pi,30);

V 14: z = −px2 + y2,z = 6 − x2 − y2

%vat the gioi han boi z=-sqrt(x^2+y^2), z=6-x^2-y^2

clc

clf

% ve mat z=6-x^2-y^2

x=linspace(-3,3,500);

y=linspace(-3,3,500);

[x, y]=meshgrid(x,y);

z1=6-x.^2-y.^2; z2=-sqrt(x.^2+y.^2);

z2(i,j)=NaN;z1(i,j)=NaN;

end

%ve duong giao tuyen

phi=linspace(0,2*pi,500);

x = 3*cos(phi);

y = 3*sin(phi);

z = -3+0.*phi;

Trang 11

V 15: x2 + 4y2 = 4,z = 0,x + z = 2

%Vat the gioi han boi x^2+4*y^2=4, x+z=2,z=0

clc

clf

% ve mat x^2+4y^2=4;

x=linspace(-2,2,200);

z=linspace(0,4,200);

[x z]=meshgrid(x,z);

y1=sqrt(4-x.^2)/2;y2=-sqrt(4-x.^2)/2;

y1(i,j)=NaN;y2(i,j)=NaN;

end

%ve mat z=0 va z=2-x

x=linspace(-2,2,200);

y=linspace(-1,1,200);

[x y]=meshgrid(x,y);

z1=0*x;z2=2-x;

z1(i,j)=NaN;z2(i,j)=NaN;

end

end

% ve giao tuyen

t=linspace(0,2*pi,100);

V 16: x = 0,y = 0,3x + y = 3,3x + 2y = 6,x + y + z = 3

%Vat the gioi han boi x=0, y=0, 3*x+y=3, 3*x+2*y=6, x+y+z=3

clc

clf

Trang 12

% ve mat y=0, 3*x+y=3, 3*x+2*y=6

x=linspace(0,2,500);

z=linspace(0,4,500);

[x, z]=meshgrid(x,z);

y1=0.*x; y2=3-3.*x; y3=(6-3.*x)/2;

y1(i,j)=NaN;

y2(i,j)=NaN;

y3(i,j)=NaN;

end

% ve mat x=0

z=linspace(0,4,500); x=linspace(0,2,500);

[x, z]=meshgrid(x,z);

y2=3-3.*x; x1=0.*x;

y2(i,j)=NaN;

end

% ve mat x+y+z=3

x=linspace(0,2,500);y=linspace(0,3,500);

[x, y]=meshgrid(x,y);

z1=3-x-y; z2=0.*x;

z1(i,j)=NaN;z2(i,j)=NaN;

end

V 17: x2 + y2 + z2 = 4,y = x,y = x 3 phần ứng với x ≥ 0,y ≥ 0

%Vat the gioi han boi x^2+y^2+x^2=4, y=x,y=sqrt(3).x

clc

clf

% ve mat y=x,y=sqrt(3)*x

x=linspace(0,2,200);

z=linspace(-2,2,200);

[x z]=meshgrid(x,z);

Trang 13

y1(i,j)=NaN;

end

y2=sqrt(3)*x;

y2(i,j)=NaN;

end

%ve mat x^2+y^2+z^2=4

phi=linspace(pi/4,pi/3,30);

theta=linspace(0,pi,30);

[p t]=meshgrid(phi,theta);

x=2*sin(t).*cos(p);

y=2*sin(t).*sin(p);

z=2*cos(t);

% ve giao tuyen

x1=linspace(0,sqrt(2),200);x2=linspace(0,1,200);

y1=x1;y2=sqrt(3)*x2

z1=sqrt(4-x1.^2-y1.^2);z2=sqrt(4-x2.^2-y2.^2);z3=-sqrt(4-x1.^2-y1.^2);z4=-sqrt(4-x2.^2-y2.^2);

%Vat the gioi han boi z=0,z=4-x^2-y^2;y=x,y=x/sqrt(3)

clc

clf

% ve mat y=x,y=x/sqrt(3)

x=linspace(0,2,300);

z=linspace(0,4,300);

[x z]=meshgrid(x,z);

y1=x;

y1(i,j)=NaN;

end

y2=x/sqrt(3);

Trang 14

for j=1:length(z)

y2(i,j)=NaN;

end

%ve mat z=4-x^2+y^2

x=linspace(0,2,300);

y=linspace(0,2,300);

[x y]=meshgrid(x,y);

z1=0*x;

z1(i,j)=NaN;

end

z2=4-x.^2-y.^2;

z2(i,j)=NaN;

end

% ve giao tuyen

x1=linspace(0,sqrt(2),200);x2=linspace(0,sqrt(3),200);

y1=x1;y2=x2/sqrt(3);

z1=4-x1.^2-y1.^2;z2=4-x2.^2-y2.^2;

p=linspace(pi/6,pi/4,30);

V 19: z = 0,z = x2,x2 + y2 = 4

% vat the gioi han boi z = 0, z = x2, x2 + y2 = 4

clc

clf

% ve mat x^2+y^2<=1

r=linspace(0,4,30);

phi=linspace(0,2*pi,30);

[r, phi]= meshgrid(r,phi);

x = 2*cos(phi);

y = 2*sin(phi);

z = r ;

% ve? z=x^2

Trang 15

[x, y]=meshgrid(x,y);

z = x.^2;

z(i,j)=NaN;

end

V 20: 1 ≤ x2 + y2 + z2 ≤ 4,x ≥ 0

% vat gioi han boi 1<=x^2+y^2+z^2<=4,x>=0

clc

clf

phi=linspace(0,2*pi,30);

theta=linspace(0,pi/2,30);

[p t]=meshgrid(phi,theta);

% ve mat x^2+y^2+z^2=4

z=2*sin(t).*cos(p);

x=2*sin(t).*sin(p);

y=2*cos(t);

%x^2+y^2+z^2=1

z=sin(t).*cos(p);

x=sin(t).*sin(p);

y=cos(t);

% ve mat day yz

phi=linspace(0,2*pi,30);

r=linspace(1,2,30);

[phi r]=meshgrid(phi,r);

x=r.*cos(phi);

z=r.*sin(phi);

y=0*phi;

% ve giao tuyen

phi=linspace(0,2*pi,30);

V 21: x2 + y2 + z2 ≤ 4,x + y le0

V 22: x = 0,y = 0,z = 0,y = 3,x + z = 2

Trang 16

% vat gioi han boi x=0,y=0,z=0,y=3,x+z=2;

clc

clf

%Ve mat z=0,z=2-x

x=linspace(0,2,200);

y=linspace(0,3,200);

[x y]=meshgrid(x,y);

z1=0*x;z2=2-x;

% ve mat y=3;y=0;x=0

x=linspace(0,2,200);

z=linspace(0,2,200);

[x z]=meshgrid(x,z);

y1=3+0*x;y2=0*x;

y1(i,j)=NaN;y2(i,j)=NaN;

end

% ve mat x=0

y=linspace(0,3,200);

z=linspace(0,2,200);

[y z]=meshgrid(y,z);

x=0*y

% ve giao tuyen

V 23: 0 ≤ z ≤p2 − x2 − y2,x2 + y2 ≥ 1

clc

clf

Trang 17

%Ve nua cau z=sqrt(2-x^2+y^2),z=0

phi=linspace(0,2*pi,50);

r=linspace(0,1,50);

[r ph]=meshgrid(r,phi);

% Phan mat cau

x=r.*cos(ph);

y=r.*sin(ph);

z1=sqrt(2-x.^2-y.^2);z2=0*x;

% phan mat tru

phi=linspace(0,2*pi,50);

z=linspace(0,1,50);

[phi z]=meshgrid(phi,z);

x=cos(phi);y=sin(phi);

% ve giao tuyen

phi=linspace(0,2*pi,50);

V 24: x2 + z2 = 1,x2 + y2 = 1

%Vat the gioi han boi x^2+y^2=1, x^2+z^2=1

clc

clf

r=linspace(0,1,30);phi=linspace(0,2*pi,30);

[r phi]=meshgrid(r,phi);

%Mat x^2+z^2=1

x=r.*cos(phi);y=r.*sin(phi);

z1=sqrt(1-x.^2);z2=-sqrt(1-x.^2);

%Mat x^2+y^2=1

x=r.*cos(phi);z=r.*sin(phi);

y1=sqrt(1-x.^2);y2=-sqrt(1-x.^2);

% ve duong giao tuyen

t=linspace(0,2*pi,50);

Trang 18

V 25: x2 + z2 = 1,x2 + z2 = 4,y = −1,y = 3

% ve x2 + z2 = 1, x2 + z2 = 4, y = ?1, y = 3

clc

clf

% ve mat x^2+y^2=1

r=linspace(-1,3,30);

phi=linspace(0,2*pi,30);

[r, phi]= meshgrid(r,phi);

x = cos(phi);

z = sin(phi);

y = r ;

% ve mat x^2+y^2=1

r=linspace(-1,3,30);

phi=linspace(0,2*pi,30);

[r, phi]= meshgrid(r,phi);

x = 2*cos(phi);

z = 2*sin(phi);

y = r ;

% y=-1;y=3

% y=3

x=linspace(-2,2,500);z=linspace(-2,2,500);

[x, z]=meshgrid(x,z);

y=3+0.*x;y1=-1+0.*x;

y(i,j)=NaN;y1(i,j)=NaN;

end

Ngày đăng: 03/09/2016, 20:01

TỪ KHÓA LIÊN QUAN