1. Trang chủ
  2. » Giáo án - Bài giảng

thi thu 10 ki 1

5 346 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Thi Thử 10 Kì 1
Trường học Trường Đại Học
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 296 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

II,Phần thí sinh tự chọnCâu 5A: 1,Trong mặt phẳng Oxy cho elip và cho đường tròn viết phương trình các tiếp tuyến của elip tại các giao điểm với đường tròn.. 2,Trong 1 lớp học có 36 học

Trang 1

Ề I :

1)(1 điểm)Khảo sát và vẽ đồ thị ©

2)(1 điểm)Đường thẳng (d) có hệ số góc k đi qua A(0;1) cắt © tại M ,N khác A Tìm k

để điểm cực tiểu của © nhìn M,N dưới một góc vuông

Bài 2:(2 điểm) Giải phương trình , bất phương trình:

Bài 3:(3 điểm)

a)(1 điểm)Viết phương trình tiếp tuyến chung của hai đường tròn:

b)(1 điểm)Tam giác ABC có trọng tâm G(1;2) Phương trình đường tròn đi qua 3 trung điểm của 3 cạnh trong tam giác là: (C1): =0

Viết phương trình đường tròn ngoại tiếp tam giác ABC

2)(1 điểm) Hình chóp s.ABC đáy ABC là tam giác đều cạnh bằng ;

SC=2 và SC vuông góc với (ABC) , gọi E,F lần lượt là trung điểm AB,BC Tính góc và khoảng cách giữa hai đường thẳng SF và CE

Bài 4:(2 điểm)

1) (1 điểm ) Tính cận [0,pi :2]

2)(1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường :

x=-1 ; x=1 ; y= ; y=3-3.cosx

Bài 5 : (1 điểm )

Tam giác ABC là tam giác gì nếu các góc thỏa mãn :

Đ

Ề II :

Câu1:Cho hàm số y=

1,khảo sát và vẽ đồ thị © của hàm số

2,Tìm m để đường thẳng y=mx-m cắt © tại 3 điểm A,B,C phân biệt sao cho AB=BC

Câu 2:1,Giải phương trình

2,tìm m để tồn tại x,y thỏa mãn đồng thời

Câu 3:Trong không gian Oxyz cho đường thẳng

1,chứng minh (d1),(d2) chéo nhau

2,Cho M(2,2,-2)Xác định phương trình mặt phẳng (P) đi qua đường vuông góc chung của (d1), (d2) và khoảng cách từ M đến (P) là lớn nhất

Bài 4:

1,Tính

2,Tìm giá trị nhỏ nhất của m để bất đẳng thức sau luôn đúng

Trang 2

II,Phần thí sinh tự chọn

Câu 5A:

1,Trong mặt phẳng Oxy cho elip và cho đường tròn viết phương trình các tiếp tuyến của elip tại các giao điểm với đường tròn

2,Trong 1 lớp học có 36 học sinh trong đó có 9 học sinh giỏi ,10 học sinh khá, 9 học sinh trung bình còn lại là học sinh kém.Lớp được chia làm 4 tổ Tính số cách chia sao cho mỗi tổ có số học sinh kém như nhau có ít nhất 2 học sinh giỏi và 2 học sinh khá(số học sinh ở mỗi tổ là như nhau)

Câu 5B:

1,giải phương trình:

2,Trong không gian cho chóp SABC vuông tại A.Đặt SA=h,AB=AC=a.Tính khoảng cách từ A tới (SBC)

Đ

Ề III :

Bài 1:

Cho hàm số: =

1.1) Khảo sát hàm số

1.2)Tìm trên trục tung những điểm mà từ đó có thể kẻ được ít nhất 1 tiếp tuyến tới đồ thị hàm

số

1.3)Tìm trên đồ thị điểm có tổng các khoảng cách tới các trục tọa độ là nhỏ nhất

Bài 2:

2.2) giải BPT:

Bài 3:

3.1)Lập PT tiếp tuyến chung của elip = và parabol =

và mặt phẳng (P): = Tìm trên (S) hai điểm sao cho các khoảng cách

từ tới (P) là lớn nhất ,nhỏ nhất

Bài 4:

4.1)Tính tích phân: =

4.2)tìm hệ số của trong khai triển

Bài 5:

Cho các số thực dương thỏa mãn = Tìm giá trị nhỏ nhất của biểu thức:

Đ

Ề IV :

câu 1 :1,khảo sát và vẽ đồ thị của hàm số y=

2,Tìm m để phương trình m= có đúng 2 nghiệm thuộc (0,2\prod)

câu 2:1,giải

2,Giải hệ

câu 3 :1,giải phương trình:

Trang 3

2,Tính tích phân I=

Câu 4:1,trong mặt phẳng tọa độ OXY cho đường tròn điểm A(2,4).Tìm tọa độ các tiếp điểm của các tiếp tuyến kẻ từ A tới đường tròn

2,Cho hình chóp SABC là chóp tam giác đều trung đoạn là d.Góc giữa mặt bên và đáy là .tính thể tích hình chóp

3,trong không gian hệ tọa độ OXYZ cho điểm M(2,2,2).P là 1 mặt phẳng qua M cắt các trục tại A,B,C sao cho thể tích OABC nhỏ nhất ,viết phương trình mặt phẳng P

Câu5: 1,Tính Lim khi x tiến về 0

2, có 3 viên bi đỏ ,3 viên bi xanh đôi 1 khác nhau Có bao cách xếp chúng thành 1 hàng dọc sao cho không có 2 viên bi cùng màu đứng cạnh nhau

Câu6:Cho a,b,c >0 thỏa mãn chứng minh

ĐỀ THI THỬ ĐẠI HỌC SỐ 1

Thời gian: 180 phút.

Câu I:

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số:

2 Biện luận theo tham số số nghiệm phương trình sau:

Câu II:

1 Giải phương trình:

2 Tìm để hệ phương trình sau có nghiệm:

Câu III:

Tìm sao cho diện tích tam giác lớn nhất

Trang 4

a Tính độ dài đường cao hạ từ đến

b Viết phương trình tham số đường cao trên Tìm tọa độ hình chiếu lên

Câu IV:

1 Tính tích phân

2 Cho và Tìm sao cho số hạng thứ 51 của khai triển có

GTLN

Câu V:

ĐỀ THI THỬ ĐẠI HỌC SỐ 2

Thời gian: 180 phút.

Câu 1:(2 điểm)

1.Khảo sát và vẽ đồ thị hàm số khi m=o

2.Tìm m để đồ thị hàm số có CĐ và CT đối xứng nhau qua đường thẳng (d):y=x

Câu 2:(2 điểm)

1.Giải phương trình:

2.Giải hệ phương trình :

(x,y R) Câu 3:(2 điểm)

1.Tam giác ABC có phân giác trong AD :y=x, đường CC':2x+y+3=0,cạnh AC

qua điểm M(0;-1) và AB=2AM.Lập phương trình các cạnh

2.Cho tứ diện SABC có SC=CA=AB=a , SC (ABC) tam giác ABC vuông tại A

Các điểm M thuộc SA và N thuộc BC sao cho AM=CN=t (0<t<2a)

a.Tính độ dài đoạn thẳng MN

b.tìm giá trị của t để đoạn thẳng MN ngắn nhất

Câu 4:(2 điểm)

1.Tính các góc của tam giác ABC nếu :2cos2B+2 (cos2C+cos2A)+5=0

2.tính giới hạn sau: lim khi x dần về 0

Câu 5:(2 điểm)

1.Từ các số của tập A={0;1;2;3;4;5;6;7;8} có thể lập đc bao nhiêu số tự nhiên :

a.Có 5 chữ số phân biệt mà mỗi số luôn có mặt chữ số 5 và 6

b.Có 5 chữ số phân biệt mà trong mỗi số luôn có chữ số 5 đứng liền kề trước chữ số 6

Trang 5

2.Tìm giá trị nhỏ nhất của hàm số :

Ngày đăng: 03/06/2013, 01:26

Xem thêm

TỪ KHÓA LIÊN QUAN

w