Bất phương trình đã cho nghiệm đúng... Điều kiện x∈ℝ.. Điều kiện x∈ℝ... Bất phương trình đã cho tương đương với 2 x x < Kết hợp điều kiện x>1ta có tập nghiệm của bất phương trình đã ch
Trang 1VIDEO BÀI GIẢNG và LỜI GIẢI CHI TIẾT CÁC BÀI TẬP chỉ có tại website MOON.VN
Bài 1: [ĐVH].Giải bất phương trình 2 1 1 1
x
x+ − ≤ + −
Lời giải
Điều kiện 1 0
3 x
− ≤ ≠
Bất phương trình đã cho tương đương với 2 1 3 1 0
x
+ − (1)
Xét 3x+ − > ⇔ >1 1 0 x 0; 1( )⇔ 2x+ <1 3x+ ⇔ >1 x 0
Xét 3x+ − < ⇔ <1 1 0 x 0; 1( )⇔ 2x+ >1 3x+ ⇔ <1 x 0 Kết hợp điều kiện suy ra 1 0
3 x
− ≤ <
Vậy bất phương trình đã cho có nghiệm 1 0
3 x
− ≤ ≠
Bài 2: [ĐVH].Giải bất phương trình 5 1 2 2 1 0
1
x x x
Lời giải
Điều kiện x≥2 Do x2+ > ∀ ∈1 x ℝ nên bất phương trình đã cho tương đương với
5x+ + ≤1 1 x− ⇔2 5x+ +2 2 5x+ ≤ − ⇔1 x 2 2x+ +2 5x+ ≤1 0 (1)
(1) vô nghiệm do 2x+ +2 5x+ > ∀ ≥1 0 x 2 Tập nghiệm của bất phương trình là S= ∅{ }
Bài 3: [ĐVH].Giải bất phương trình 3 1 1 2
3
2 1 3
x x
x x
+ + − >
Lời giải
Điều kiện x≥0
Nhận xét: x>0⇒2 1 3+ x > x Do đó bất phương trình đã cho tương đương với
2
2
5
11 5 0
121
x
x x
x
≥
<
Kết luận nghiệm của bất phương trình là x>1
Bài 4: [ĐVH].Giải bất phương trình 32 6 7 3 1
x + + ≥ +x x (1)
Lời giải
Điều kiện x≠0
+ + < ⇔ < ⇔ − < < Bất phương trình đã cho nghiệm đúng
3
x x
x
>
+
≤ −
DỰ ĐOÁN BẤT PHƯƠNG TRÌNH 2016 – HÓT HÓT
Thầy Đặng Việt Hùng – Moon.vn
Trang 2Khi đó ( )
2
0
3 3
3
x x
x x x x
x x
x x
x x
x
− ≤ ≤
⇔ > ⇔ > ⇔ > ⇔ < ≤
≤ −
≤ −
≤ −
Vậy bất phương trình đã cho có nghiệm 3 1
0
x x
− < ≤
≠
Bài 5: [ĐVH].Giải bất phương trình 3 x3+2x2+4x+ ≤ +1 x 1
Lời giải
Điều kiện x∈ℝ
Bất phương trình đã cho tương đương với 3 2 2 4 1 3 3 2 3 1 2 0 1
0
x
x x x x x x x x
x
≥
≤
Vậy nghiệm của bất phương trình là S= −∞( ; 0 1;][ +∞)
Bài 6: [ĐVH].Giải bất phương trình 36x2+7x− ≤5 3x−1
Lời giải
Điều kiện x∈ℝ
Bất phương trình đã cho tương đương với
2
1
x
x
≥
Vậy bất phương trình đã cho có nghiệm 1 13 1 13 [ )
S = − + ∪ +∞
Bài 7: [ĐVH].Giải bất phương trình
2
x
− − + − < +
Lời giải
Điều kiện x≥3
2 x −3x− + − <x 1 x 3x+ ⇔1 2 x −3x <5x 1 Với x≥3thì ( 2 ) 2 2
4 x −3x <25x ⇔7x +4x>0 (nghiệm đúng với x≥3)
Kết luận nghiệm x≥3
Bài 8: [ĐVH].Giải bất phương trình
2
x
Lời giải
Điều kiện
2 1
1 2
x
x
≥
< ≤
Bất phương trình đã cho tương đương với
( )
2
x
≤
Kết hợp điều kiện thu được nghiệm 1 { }
2
S
= ∪
Trang 3Bài 9: [ĐVH].Giải bất phương trình
2
1
x
Lời giải
Điều kiện 3
x
x
≥
− < ≤
Bất phương trình đã cho tương đương với
2
2
1 1
1 2
2
1 1
3
2 2
3
x x
x
x
x x
≤ ≤
≤
Kết hợp điều kiện thu được nghiệm 1; 2
3
S
= −
Bài 10: [ĐVH].Giải bất phương trình
2
3
x
x
− + − >
Lời giải
Điều kiện x≥4 Bất phương trình đã cho tương đương với
8
5
x
x x
x
− <
>
− ≥
>
− > − +
Kết hợp điều kiện x≥4thu được nghiệm S =(5;+∞)
Bài 11: [ĐVH].Giải bất phương trình 7 1 2
1
x
+ − − <
−
Lời giải
Điều kiện x>1 Bất phương trình đã cho tương đương với
2
x x
<
Kết hợp điều kiện x>1ta có tập nghiệm của bất phương trình đã cho là 1< <x 2
Bài 12: [ĐVH].Giải bất phương trình 4 3 5 2
3
x
x
− + − ≤ +
Lời giải
Điều kiện 5 3
2 x
− ≤ < Bất phương trình đã cho tương đương với
2
7
7
2
17
6
x
x
x
− <
Kết hợp điều kiện thu được nghiệm 2≤ <x 3
Trang 4Bài 13: [ĐVH].Giải bất phương trình x+ −2 2x ≤ 7 3− x− 5 2− x
Lời giải
Điều kiện 0 7
3
x
≤ ≤
Bất phương trình đã cho tương đương với
10
13
Kết hợp điều kiện ta thu được nghiệm 10 7
13≤ ≤x 3
Bài 14: [ĐVH].Giải bất phương trình 4x− +1 2x− ≤3 3x+ +2 x
Lời giải
Điều kiện 3
2
x≥ Bất phương trình đã cho tương đương với 4x− −1 x ≤ 3x+ −2 2x−3 (1)
2
x≥ ⇒ x− − x> x+ − x− >
Kết luận tập nghiệm 3 4
2≤ ≤x
Bài 15: [ĐVH].Giải bất phương trình 3x+ +1 2x+ ≤3 5x− +2 2 x
Lời giải
Điều kiện 2
5
x≥ Bất phương trình đã cho tương đương với 3x+ −1 4x≤ 5x− −2 2x+3 (1)
x
Khi đó (1) nghiệm đúng với 5
3
x≥ Xét trường hợp 3x+ −1 4 ;x 5x− −2 2x+3cùng dấu thì
2
2
2
x
x x
x
≥
≤
Bất phương trình đã cho có nghiệm 2 3 [ )
5 2
S