1. Trang 1 TP1: TÍCH PHÂN HÀM SỐ HỮU TỈ x I dx x x 2 2 2 1 7 12 Dạng 1: Tách phân thức xxx ddd x x 222 222 2 111 777 222 I dx x x 2 1 16 9 1 4 3 Câu 1. III xxx x x2 111 ddd x x 222 1 x x x 2 116ln 4 9ln 3 III xxx x x1 111666 999 111 444 333 xxx xxx 111111666 nnn 444 999lllnnn 333 1 25ln2 16ln3 = xxx 222 lll 111 = 222555lllnnn222 111666lllnnn333 dx I x x 2 5 3 1 . x x 222 5 3 1 x xx x x x3 2 3 2 1 1 1 ( 1) 1 Câu 2. dddxxx III x x5 3 1 xx x x x3 2 3 2 111 111 ( 1) 1 I x x x 2 2 21 1 3 1 3 ln ln( 1) ln2 ln5 2 2 2 812 Ta có: xxx xx x x x3 2 3 2 111 ( 1) 1 III xxx xxx x2 222111 111 333 111 333 lllnnn lllnnn((( 111))) lllnnn222 lllnnn555 2 2 2 812 x I dx x x x 5 2 3 2 4 3 1 2 5 6 x 222 2 2 2 2 812 xxx III dddxxx x x x 555 222 3 2 4 111 2 5 6 I 2 4 13 7 14 ln ln ln2 3 3 15 6 5 Câu 3. x x x3 2 4 333 2 5 6 444 111 777 111 lllnnn lllnnn222 3 3 15 6 5 xdx I x 1 0 3 ( 1) III 222 333 444 lllnnn 3 3 15 6 5 ddd x 111 0 3 ( 1) x x x x x x 2 3 3 3 1 1 ( 1) ( 1) ( 1) ( 1) I x x dx 1 2 3 0 1 ( 1) ( 1) 8 Câu 4. xxx xxx III x0 3 ( 1) xxx xxx xxx xxx x x 222 333 3 3 ((( 111))) ((( 111))) ( 1) ( 1) ddd 0 111 Ta có: x x3 3 111 111 ( 1) ( 1) III xxx xxx xxx 111 222 333 0 111 ((( ))) ((( 111))) 888 x I dx x 2 4 ( 1) (2 1) Dạng 2: Đổi biến số III ddd x 222 4 ((( 111 (2 1) x x f x x x 2 1 1 1 ( ) . . 3 2 1 2 1 Câu 5. xxx xxx x 4 ))) (2 1) 222 111 111 3 2 1 2 1 x I C x 3 1 1 9 2 1 Ta có: xxx xxx fff xxx xxx xxx 111 ((( ))) ... ... 3 2 1 2 1 xxx III CCC x 333 111 111 9 2 1 x I dx x 991 101 0 7 1 2 1 x9 2 1 xxx III dddxxx x 101 0 777 111 2 1 x dx x x I d x x xx 99 991 1 2 0 0 7 1 1 7 1 7 1 2 1 9 2 1 2 12 1 Câu 6. x 999999111 101 0 2 1 dddxxx xxx xxx ddd x x xx 999 2 0 0 2 1 9 2 1 2 12 1 x x 100 1001 1 7 1 11 2 1 09 100 2 1 900 x I dx x 1 2 2 0 5 ( 4) xxx III x x xx 999999 999111 111 2 0 0 777 111 111 777 111 777 111 2 1 9 2 1 2 12 1 x x 100 1001 1 7 1 11 2 1 09 100 2 1 900 xxx III dddxxx x 111 2 2 0 555 ( 4) Câu 7. x2 2 0 ( 4) t x2 4 I 1 8 Đặt ttt xxx222 444 111 888 III http:megabook.vn2. x I dx x 1 7 2 5 0 (1 ) Trang 2 III ddd x 111 777 2 5 000 ((( t x dt xdx2 1 2 Câu 8. xxx xxx x2 5 111 ))) dddttt222 111 t I dt t 2 3 5 5 1 1 ( 1) 1 1 . 2 4 2 Đặt ttt xxx xxxdddxxx222 III dddttt t 222 333 5 5 1 111 ((( 111))) 111 111 2 4 2 I x x dx 1 5 3 6 0 (1 ) ttt t5 5 1 ... 2 4 2 ddd 111 0 ((( dt t t t x dt x dx dx I t t dt x 1 7 8 3 2 6 2 0 1 1 1 1 3 (1 ) 3 3 7 8 1683 Câu 9. III xxx xxx xxx555 333 666 0 111 ))) ttt ttt ttt ttt ddd x 111 777 888 333 222 666 2 0 111 111 111 333 111 ))) 3 3 7 8 1683 I dx x x 4 3 4 1 1 ( 1) Đặt ddd ttt xxx dddttt xxx dddxxx dddxxx III ttt ttt x2 0 111 ((( 3 3 7 8 1683 III dddxxx x x 444 4 1 111 ( 1) t x2 Câu 10. x x 333 4 1 ( 1) 222 t I dt t t 3 2 1 1 1 1 3 ln 2 4 21 Đặt ttt xxx ttt III ddd t t2 1 111 lllnnn 2 4 21 dx I x x 2 10 2 1 .( 1) ttt t t 333 2 1 111 111 333 2 4 21 xxx III x x10 2 ...((( 111))) x dx I x x 2 4 5 10 2 1 . .( 1) Câu 11. ddd x x 222 10 2 111 ddd x x 444 5 10 2 1 .( 1) t x5 xxx xxx III x x 222 5 10 2 1 ... .( 1) 555 dt I t t 32 2 2 1 1 5 ( 1) . Đặt ttt xxx ttt III t t 333222 2 2 1 111 555 ((( 111))) x I dx x x 2 7 7 1 1 (1 ) ddd t t2 2 1 xxx ddd x x 222 777 7 1 (1 ) x x I dx x x 2 7 6 7 7 1 (1 ). .(1 ) Câu 12. III xxx x x7 1 111 (1 ) xxx xxx x x 222 777 666 7 7 1 111 .(1 ) t x7 III dddxxx x x7 7 1 ((( )))... .(1 ) 777 t I dt t t 128 1 1 1 7 (1 ) . Đặt ttt xxx ttt III dddttt t t 111 888 1 111 111 7 (1 ) dx I x x 3 6 2 1 (1 ) t t 222 1 7 (1 ) dddxxx III x x 333 6 2 111 ))) x t 1 Câu 13. x x6 2 111 ((( 111 t I dt t t dt t t 3 163 4 2 2 2 1 3 3 1 1 1 1 Đặt : xxx ttt III ddd dddttt t t 333 111666333 444 222 2 2 1 3 3 111 111 1 1 117 41 3 135 12 ttt ttt ttt ttt t t2 2 1 3 3 1 1 111 444 135 12 x I dx x 2 2001 2 1002 1 . (1 ) = 111 777 111 333 135 12 xxx dddxxx x 222 000000111 2 1002 1 (1 ) x I dx dx x x x x 2 22004 3 2 1002 1002 1 1 3 2 1 . . (1 ) 1 1 Câu 14. III x 222 2 1002 1 ... (1 ) xxx III ddd xxx x x x x 222 222444 3 2 1002 1002 1 1 3 2 ... ... (1 ) 1 1 t dt dx x x2 3 1 2 1 xxx ddd x x x x 222000000 3 2 1002 1002 1 1 3 2 111 (1 ) 1 1 ttt dddttt dddxxx x x2 3 111 222 . Đặt x x2 3 111 x xdx I x x 1 2000 2 2000 2 2 0 1 .2 2 (1 ) (1 ) . xxx xxxdddxxx III x x 111 000 2 2000 2 2 0 111 222 (((111 ))) (((111 ))) Cách 2: Ta có: x x 222000 000 2 2000 2 2 0 ...222 t x dt xdx2 1 2 t I dt d t tt t 10002 21000 1000 2 1001 1 1 1 ( 1) 1 1 1 1 1 1 2 2 2002.2 . Đặt ttt xxx dddttt xxxdddxxx222 111 222 ttt III ddd t tt t 000000 1000 2 1001 1 1 ((( ))) 111 111 111 111 111 2 2 2002.2 x I dx x 2 2 4 1 1 1 ttt ddd t tt t 111 000000222 222111 000000 1000 2 1001 1 1 111 111 111 2 2 2002.2 xxx III dddxxx x 222 4 1 111 1 Câu 15. x 222 4 11 http:megabook.vn3. x x x x x 2 2 4 2 2 1 1 1 11 Trang 3 xxx xxx x x x 222 4 2 2 111 111 111 11 t x dt dx x x2 1 1 1 Ta có: x x x 222 4 2 2 11 t x dt dx 222 1 1 1 dt I dt t tt 3 3 2 2 2 1 1 1 1 1 2 2 2 22 t t 3 1 2 1 2 1 .ln ln2 2 2 2 2 2 2 11 . Đặt t x dt dx xxx xxx 1 1 1 dt I dt 3 3 2 2 111 111 1 1 1 t 3 1 2 1 2 1 .ln ln2 222 222 111 x I dx x 2 2 4 1 1 1 dt I dt ttt tttttt 3 3 2 2 222 1 1 1 222 222 222 222222 t ttt 3 1 2 1 2 1 .ln ln2 222 222 222 222111 x I dx 2 2 1 111 x x x x x 2 2 4 2 2 1 1 1 11 Câu 16. x I dx xxx 2 2 444 111 1 xxx xxx x x x 222 4 2 2 111 111 111 11 t x dt dx x x2 1 1 1 Ta có: x x x 222 4 2 2 11 t x dt dx xxx 222 1 1 1 dt I t 5 2 2 2 2 . Đặt t x dt dx xxx 1 1 1 dt I 5 2 2 2 dt I ttt 5 2 222 2 2 du t u dt u2 2tan 2 cos . uuu ttt uuu dddttt u2 222 aaannn 222 cos u u u u1 2 5 5 tan 2 arctan2; tan arctan 2 2 Đặt ddd u2 ttt cos 111 222aaarrr aaa ttt aaarrr 2 2 u u I d u u u 2 1 2 1 2 2 2 5 ( ) arctan arctan2 2 2 2 2 ; uuu uuu uuu uuu 555 555 tttaaannn 222 cccttt nnn222;;; aaannn ccctttaaannn 2 2 u 222 ddduuu uuu uuu 1 222 222 222 555 aaarrrccc aaarrrccc 2 2 2 2 x I dx x x 2 2 3 1 1 uuu u III 1 222 111((( ))) tttaaannn tttaaannn222 2 2 2 2 ddd x x3 1 xI dx x x 2 2 1 1 1 1 Câu 17. xxx III xxx x x 222 222 3 1 111 dddxxx x x 222 222 1 1 t x x 1 Ta có: xxxIII x x 1 111 111 1 xxx xxx 111 . Đặt ttt I 4 ln 5 x I dx x 1 4 6 0 1 1 III 444 lllnnn 555 xxx III ddd x 111 6 0 111 1 x x x x x x x x x x x x x x x x 4 4 2 2 4 2 2 2 6 6 2 4 2 6 2 6 1 ( 1) 1 1 1 1 ( 1)( 1) 1 1 1 Câu 18. xxx x 444 6 0 1 xxx xxx xxx xxx xxx xxx xxx xxx x x x x x x x x 444 6 6 2 4 2 6 2 6 111 ((( 111))) 111 111 1 1 ( 1)( 1) 1 1 1 d x I dx dx x x 1 1 3 2 3 2 0 0 1 1 ( ) 1 . 3 4 3 4 31 ( ) 1 Ta có: x x x x x x x x 444 222 222 444 222 222 222 6 6 2 4 2 6 2 6 1 1 ( 1)( 1) 1 1 1 d x I dx dx 1 1 3 1 1 ( ) 1 . x I dx x 3 23 4 0 1 d x I dx dx xxx xxx 1 1 3 222 333 222 000 000 1 1 ( ) 1 . 333 444 333 444 333111 ((( ))) 111 xxx III dddxxx x 333 222333 4 000 111 x I dx dx x x x x 3 3 23 3 2 2 2 2 0 0 1 1 1 1 ln(2 3) 2 4 12( 1)( 1) 1 1 Câu 19. x4 xxx dddxxx x x x x 333 333 222333 333 2 2 2 2 0 0 111 lllnnn(((222 2 4 12( 1)( 1) 1 1 xdx I x x 1 4 2 0 1 xxx III ddd x x x x2 2 2 2 0 0 111 111 111 333))) 2 4 12( 1)( 1) 1 1 dddxxx x x 111 4 2 000 Câu 20. xxx III x x4 2 111 t x2 dt dt I t t t 1 1 2 22 0 0 1 1 2 2 6 31 1 3 2 2 . Đặt ttt xxx222 ttt dddttt III t t t 111 111 2 22 0 0 111 111 2 2 6 31 1 3 2 2 ddd t t t 2 22 0 0 2 2 6 31 1 3 2 2 http:megabook.vn4. x I dx x x 1 5 22 4 2 1 1 1 Trang 4 dddxxx x x 222 4 2 1 1 x x x x x x 2 2 4 2 2 2 1 1 1 11 1 Câu 21. xxx III x x 111 555 222 4 2 1 111 1 x x x x 222 222 4 2 2 2 111 111 11 1 t x dt dx x x2 1 1 1 Ta có: xxx xxx x x x x 4 2 2 2 111 11 1 t x dt dx 222 1 1 1 dt I t 1 2 0 1 . Đặt t x dt dx xxx xxx 1 1 1 dt I 1 222 0 1 du t u dt u2 tan cos dt I ttt 1 0 1 ttt uuu ttt u2 ttt cos I du 4 0 4 . Đặt ddduuu ddd u2 aaannn cos ddd 0 4 III uuu 444 0 4 TP2: TÍCH PHÂN HÀM SỐ VÔ TỈ x I dx x x2 3 9 1 Dạng 1: Đổi biến số dạng 1 xxx III ddd x x2 3 9 1 x I dx x x x dx x dx x x dx x x 2 2 2 2 (3 9 1) 3 9 1 3 9 1 Câu 22. xxx x x2 3 9 1 xxx III xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx x x2 (3 9 1) 3 9 1 3 9 1 I x dx x C2 3 1 13 ddd ddd ddd ddd x x 222 222 222 2 (3 9 1) 3 9 1 3 9 1 III xxx xxx111 111333 I x x dx2 2 9 1 x d x x C 3 2 2 2 2 2 1 1 9 1 (9 1) (9 1) 18 27 + xxx ddd CCC222 333 III xxx xxx xxx222 xxx ddd xxx xxx CCC 111 111 999 111 (((999 ))) 999 111))) 18 27 I x x C 3 2 321 (9 1) 27 + ddd222 999 111 333 222 222 222 222 222111 ((( 18 27 III xxx 111 999 111))) 27 x x I dx x x 2 1 xxx CCC 333 222 333222((( 27 xxx III dddxxx x x1 x x dx x x 2 1 x x dx dx x x x x 2 1 1 Câu 23. xxx x x 222 1 xxx xxx x x1 xxx xxx dddxxx xxx x x x x1 1 xxx ddd x x 222 1 ddd x x x x 222 1 1 x I dx x x 2 1 1 . xxx III xxx x x111 x x t x x2 1 1 x t3 2 2 ( 1) x dx t t dt2 24 ( 1) 3 + ddd x x 222 111 xxx xxx ttt xxx xxx111 111 333 222 222 222 222 3 t dt t t C2 34 4 4 ( 1) 3 9 3 . Đặt t= 222 xxx ttt((( 111))) xxx dddxxx ttt ttt dddttt 444 ((( 111))) 3 ddd ttt 3 9 3 x x x x C 3 1 4 4 1 1 9 3 ttt ttt ttt CCC222 333444 444 444 ((( 111))) 3 9 3 xxx xxx xxx CCC 333 111 9 3 x I d x x x 2 1 = xxx 444 444 111 111 9 3 xxx III dddxxx x x111 d x x x x 2 (1 ) 3 1 + x x 222 ddd x x 222 (((111 ))) 3 1 x x C2 4 1 3 = xxx xxx x x3 1 222 3 I x x C 3 4 1 9 = xxx xxx CCC 444 111 3 I x x C 3 4 1 x I dx x 4 0 2 1 1 2 1 Vậy: I x x C 3 4 1 999 xxx III dddxxx x 444 01 2 1 t x2 1 Câu 24. x0 222 111 1 2 1 ttt xxx t dt t 3 2 1 2 ln2 1 Đặt 222 111 ttt dddttt t 333 222 1 222 lllnnn222 1 . I = t1 1 . http:megabook.vn5. dx I x x 6 2 2 1 4 1 Trang 5 III x x 666 222 t x4 1 Câu 25. dddxxx x x 222 111 444 111 Đặt ttt xxx444 111 I 3 1 ln 2 12 I x x dx 1 3 2 0 1 . III 333 111 lllnnn 222 111222 ddd 111 333 222 0 t x2 1 Câu 26. III xxx xxx xxx 0 111 ttt 111 I t t dt 1 2 4 0 2 15 Đặt: xxx222 ttt ddd 111 222 444 0 222 15 III ttt ttt 0 15 x I dx x 1 0 1 1 . xxx III dddxxx x 111 0 111 1 t x Câu 27. x01 xxx dx t dt2 . Đặt ttt ddd ddd... t t dt t 1 3 0 2 1 xxx ttt ttt222 t 111 333 0 t t dt t 1 2 0 2 2 2 1 . I = ttt ttt dddttt t0 222 111 ddd t 111 222 0 11 4ln2 3 = ttt ttt ttt t0 222 222 222 111 3 = 111111 444lllnnn222 3 x I dx x x 3 0 3 3 1 3 . ddd x x 333 0 3 1 3 t x tdu dx1 2 Câu 28. xxx III xxx x x0 333 3 1 3 ttt xxx tttddduuu xxx111 222 t t I dt t dt dt tt t 2 2 23 2 1 1 1 2 8 1 (2 6) 6 13 2 3 3 6ln 2 Đặt ddd ttt ttt III dddttt ttt dddttt dddttt tt t 222 222 222 2 1 1 1 222 888 111 ((( 666 666 1113 2 333 333 666lllnnn 222 I x x dx 0 3 1 . 1 tt t 333 2 1 1 1 222 ))) 3 2 ddd 000 333 1 ... t t t x t x dx t dt I t dt 1 1 7 4 3 2 33 00 9 1 1 3 3( 1) 3 7 4 28 Câu 29. III xxx xxx xxx 1 111 ttt ttt ttt xxx ttt xxx dddxxx ttt dddttt III ttt ttt 00 999 111 111 333 333((( 111))) 333 777 444 888 x I dx x x 5 2 1 1 3 1 Đặt ddd 111 111 777 444 333 222 333333 00 222 xxx III dddxxx x x 555 222 1 111 3 1 tdt t x dx 2 3 1 3 Câu 30. x x1 3 1 ttt xxx dddxxx 222 333 111 333 t tdt I t t 2 2 4 2 2 1 1 3 2 . 31 . 3 dt t dt t 4 4 2 2 2 2 2 ( 1) 2 9 1 t t t t 3 4 4 2 1 1 100 9 ln ln . 9 3 1 27 52 2 Đặt tttddd ttt ttt tttdddttt III t t 2 2 111 111 333 222 ... 3331 . 3 ddd t 444 444 222 2 2 2 222 ))) 999 t t t t 3 4 4 2 1 1 100 9 ln ln . 9 3 1 27 52 2 x x I dx x 3 2 0 2 1 1 t t 222 222 444 2 2 1 . 3 ttt ttt dddttt t2 2 2 ((( 111 222 111 t t t t 3 4 4 2 1 1 100 9 ln ln . 9 3 1 27 52 2 x x I dx xxx 3 2 000 2 1 111 x t x t2 1 1 Câu 31. x x I dx 3 2 2 1 222 dx tdt2 Đặt xxx ttt xxx ttt111 111 dddxxx tttdddttt222 t t t I tdt t t dt t t 2 2 22 2 2 5 4 2 3 11 1 2( 1) ( 1) 1 4 54 2 2 (2 3 ) 2 5 5 ttt III tttddd ttt ttt dddttt ttt t 222 222 555 11 1 ((( 111 555 222 222 222 333 ))) 222 5 5 ttt ttt ttt t 222 222222 222 444 222 333 11 1 222 ))) ((( 111))) 111 444 444 ((( 5 5 http:megabook.vn6. x dx I x x 1 2 0 2 ( 1) 1 Trang 6 xxx dddxxx III x x 111 0 222 ( 1) 1 t x t x tdt dx2 1 1 2 t t I tdt t dt t t tt 222 22 2 3 3 11 1 ( 1) 1 1 16 11 2 .2 2 2 2 3 3 Câu 32. x x 222 0 ( 1) 1 ttt ddd222 t t I tdt t dt t t tt 222 22 2 3 3 11 1 ( 1) 1 1 16 11 2 .2 2 2 2 3 3 x I dx x 4 2 0 1 1 1 2 Đặt ttt xxx ttt xxx dddttt xxx111 111 222 t t I tdt t dt t t tt 222 22 2 3 3 11 1 ( 1) 1 1 16 11 2 .2 2 2 2 3 3 ddd x 2 0 1 1 2 dx t x dt dx t dt x 1 1 2 ( 1) 1 2 Câu 33. xxx III xxx x 444 2 0 111 1 1 2 ddd ddd ttt x 111 ((( 111))) 1 2 t t x 2 2 2 Đặt xxx ttt xxx ttt dddxxx ttt ddd x 111 222 1 2 xxx 222 222 2 t t t t t t dt dt t dt tt t t 4 4 42 3 2 2 2 2 2 2 2 1 ( 2 2)( 1) 1 3 4 2 1 4 2 3 2 2 2 và ttt ttt 2 ttt ttt ttt ttt ttt ttt ttt dddttt ttt dddttt tt t t 222 2 2 2 2 2 2 111 ((( 222 222)))((( 111))) 111 333 444 222 111 444 222 333 2 2 2 t t t t 2 1 2 3 4ln 2 2 Ta có: I = ddd tt t t 444 444 444333 222 2 2 2 2 2 2 2 2 2 ttt 222 333 lllnnn 2 2 = ttt ttt ttt 111 222 444 2 2 1 2ln2 4 x I dx x 8 2 3 1 1 = 111 222lllnnn222 444 III dddxxx x2 3 1 x I dx x x 8 2 2 3 1 1 1 Câu 34. xxx x 888 2 3 111 1 x x2 2 3 1 1 x x x 8 2 2 3 1 ln 1 xxx III dddxxx x x 888 2 2 3 111 1 1 888 222 222 3 1 ln 3 2 ln 8 3 = xxx xxx xxx 3 111 lllnnn 111 111 lllnnn 333 222 nnn 888 333 I x x x dx 1 3 2 0 ( 1) 2 = lll III xxx xxx xxx dddxxx 111 333 222 0 I x x x dx x x x x x dx 1 1 3 2 2 2 0 0 ( 1) 2 ( 2 1) 2 ( 1) Câu 35. 0 ((( 111))) 222 ddd ddd 111 111 333 222 222 222 0 0 ((( ))) 222 ((( 222 ))) 222 ((( ))) t x x2 2 III xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx 0 0 111 111 111 ttt xxx xxx222 I 2 15 . Đặt 222 15 III 222 15 x x x I dx x x 2 3 2 2 0 2 3 1 . xxx xxx xxx III dddxxx x x2 0 222 333 1 x x x I dx x x 2 2 2 0 ( )(2 1) 1 Câu 36. x x 222 333 222 2 0 1 xxx xxx xxx III xxx x x 222 2 0 ((( )))222 111))) 1 t x x2 1 I t dt 3 2 1 4 2 ( 1) 3 ddd x x 222 2 0 ((( 1 ttt xxx xxx 111 III ttt dddttt 1 444 222 ((( ))) 333 . Đặt 222 333 222 1 111 x dx I x 2 3 3 2 0 4 . ddd x 3 2 0 4 t x x t xdx t dt 3 2 2 3 2 4 4 2 3 Câu 37. xxx xxx III x 222 333 3 2 0 4 ttt xxx xxx ttt dddxxx ttt ttt444 444 222 333 I t t dt 3 2 4 3 4 3 3 8 ( 4 ) 4 2 2 2 5 Đặt xxx ddd 333 222 222 333 222 III ddd 3 4 333 ((( 2 2 5 dx I x x 1 2 11 1 ttt ttt ttt 3 222 444 333 4 333 888 444 ))) 444 222 2 2 5 ddd x x 111 2 11 1 Câu 38. xxx III x x2 11 1 http:megabook.vn7. x x x x I dx dx xx x 1 12 2 2 2 1 1 1 1 1 1 2(1 ) (1 ) x dx dx x x 1 1 2 1 1 1 1 1 1 2 2 I dx x x x 1 1 1 1 1 1 1 1 1 ln | 1 2 2 x I dx x 1 2 2 1 1 2 Trang 7 xxx xxx xxx xxx xxx xxx 222 222 111 111 111 111 111 111 ((( xxx dddxxx xxx 111 111 111 111 111 111 xxx111 222 222 x I dx x 111 222 222 1 1 2 t x t x tdt xdx2 2 2 1 1 2 2 Ta có: d d xx x 111 222 2 2 1 1 2(1 ) (1 ) ddd x x 111 222 1 1 2 2 ddd xxx 111 111 111 111 222 222 III xxx 1 2 2 222 tttdddttt ddd111 111 222 t dt t 2 2 2 2 0 2( 1) + xxx xxx xxx 111 111 111 nnn ||| xxx dddxxx 111 111 ttt xxx ttt xxx xxx xxx222 222 222 222 2 t dt2 0 I 1 + tttdddttt ddd111 111 222 ttt222 222 ((( ))) III . Đặt ttt xxx ttt xxx xxx xxx222 222 222 222 dddttt 000 222 111 111 t x x2 1 I2= ttt222 222 t x x2 1 Vậy: 111 xxx xxx222 111 x x I dx x 1 3 31 4 1 3 . ttt xxx xxx III xxx 1 3 31 I dx x x 1 1 3 2 3 1 3 1 1 1 . Cách 2: Đặt 444 111 333 III dddxxx 111 111 333 222 333 333 111 111 t x2 1 1 . xxx dddxxx 111 111 ... t xxx 1 1 I 6Câu 39. 111 333 333111 III dddxxx xxx xxx 111 111 333111 111 222 111 111 III Ta có: 111 ... xxx x I dx x 2 2 1 4 . Đặt ttt 666 x I dxxx x 2 1 4 x I xdx x 2 2 2 1 4 xxx xxx 222 111 444 III xxxdddxxx x t x tdt xdx2 2 2 4 4 . III ddd xxx 222 222 xxx ttt xxx dddttt xxxdddxxx444 444 t tdt t t dt dt t tt t t 00 0 02 2 2 2 33 3 3 ( ) 4 2 (1 ) ln 24 4 4 Câu 40. 222 xxx x xxx 222 111 444 ttt222 222 222 ttt 000000 2 222 222 222 333333 333 ((( ))) ( ))) lll 222444 2 3 3 ln 2 3 Ta có: 222 222 xxx ttt xxx dddttt xxxdddxxx444 444 ttt ttt 000 000 333 444 222 444 444 222 333 333 lllnnn 222 333 x I dx x x 2 5 2 2 2 ( 1) 5 . Đặt t = ttt222 222 222 tttdddttt ttt ttt dddttt dddttt ttt ttt ttt 111 nnn xxx xxx x222 ((( ))) t x2 5 I = 222 ((( 222 333 333 lllnnn ddd ttt xxx 555 dt I t 5 2 3 1 15 ln 4 74 = III xxx 222 555 111 222 dt I ttt 5 222 333 1 15 ln 444 777 Câu 41. x I dx xxx 2 5 222 222 555 ttt xxx 555 III 444 x I dx x x 27 3 2 1 2 Đặt 222 ddd555 111 x I dx x x 2 3 2 1 2 ttt 111 555 lllnnn xxx 7 222 t x6 t t I dt dt tt t t t 3 33 2 2 2 1 1 2 2 2 1 5 5 1 ( 1) 1 1 2 5 5 3 1 ln 3 12 . xxx III dddxxx 222 333 222 111 ttt ttt ttt III dddttt ttt t ttt222 222 111 111 222 222 222 111 555 555 111 ) 111 111 222 lll 333 111 I dx x x 1 2 0 1 1 Câu 42. xxx 777 xxx666 ddd tttttt ttt 333 333333 ((( ))) 555 555 333 111 nnn 222 III xxx000 111 t x x x2 1 Đặt ttt ttt ttt III dddttt ttt ttt222 222 222 222 111 555 555
Trang 13 3 15 6 5
xdx I
( 1)(2 1)
((( 1(2 1)
101 0
02 1 2 1 902 1 2 1
x x
Trang 2x x ((( 10 11)))2
x dx I
2 2000 2 2 0
12
t t
0 0
11
x
2 4 1
11
Trang 311
11
11
11
5 2
2 2
1
111
1
111
11
11
x
3 2 3 4
Trang 411
x III d dx x
Trang 5dx I
215
1
2 4 0
215
x
1
0
11
0
21
1 2 0
114ln2
0 0
t t
2 2 4 2 2
11
.31
.3
t t
2 2
11
31
.3
2 2 4 2
.3
Trang 6x dx I
11
11
3 2 1
Trang 71 1 1
4 1
3
1 3
3
1 1
Câu 39.
1 3
3 3 3 1
x
1 1
4
x
1 15ln
5 2 3
1 15ln
11
Trang 8t t
2 2
2 ( 1)
2 ( 1)( 1)
2 3 1
11
11
x
3 2
11
3 2
2 2 2 2 2 2 2 2
11
11
2
11
3
7
3 2
3 0
11
7
3 2
3 0
t
t t
t t
2 3
11
11
t
t t
t t
2 3
11
11
t
t t
t t
2 3
11
11
Trang 94 1
32
2 4 1
32
Trang 102
0
22
x
x x x III
2 2
2 2
2 2
ccoooss
3 34
Trang 12(sin cos ) 4cos2
o tttaa tttaasin4
142sin
2 3
142sin
42sin
Trang 13x x
6 6 0 0
1 112sinsinsinsin 33
dx dx
x x x
6 6 0 0
cos cos
3 sinsin2cos.sin 3
dx dx
x x
6 6 0 0cossin 2 6
1122sincos 26
6 6 0 0
ln sin
ln cos
III ccocoo x xxccoco x xxd d
Trang 14dx x x
3 0
3 0
3 0
3 0
5
xdx I
dx I
dx x
x x
dx
cos.2sin
8cos.cos.sin
.cos.sin
ttanx
x xx x
d
dx xx x
x x
d
dx xx III
oosss.2sin
8cos.cos.sin
t2
2sin2
t2
2iiinnn22
Trang 15dx I
21
21
21
x x
2011
2011 2 2
11
1
tttiii ttt
0
sin cos2
0
iiinnn cccoooss2
ssiiinn n
x x x x
1
ln28
Đặt ttt ooss
d u
Trang 16x x
3
ssiiinn ccc ss
dx I
sin 22
2 n
x
x xx
3
1 2
2
3 1
t t
3
1 2
2
3 1
Trang 17sin43
4
t
1 4
1
2 13
1
2 13
= t
1 1 4
2 3
2 3
Trang 182 0
2
3 0
sin(sin cos )
sin(sin cos )
7sin 5cos(sin cos )
7sin 5cos(sin cos )
Trang 193sin 2cos(sin cos )
3sin 2cos(sin cos )
0
1
tan (cos )cos (sin )
0
1
tan (cos )cos (sin )
0
1
tan (sin )cos (cos )
0
1
tan (sin )cos (cos )
0
1
tan (sin )cos (cos )
0
1
tan (sin )cos (cos )
Trang 20cos (sin ) cos (cos )
cos (sin ) cos (cos )
sincos 3 sin
sincos 3 sin
sin
.cos 3 sin
sin
.cos 3 sin
Trang 212 0
t t
1
1 3
3 2
0 0
1
1 3
3 2
0 0
cot2
cot2
Trang 22sin5sin cos 2cos
sin5sin cos 2cos
4
sin cos (tan 2tan 5)
4
sin cos (tan 2tan 5)
6
sinsin3
6
sinsin3
1 sin2 sin cos sin cos
Ta có: 1 sin2 x sinx cosx sinx cosx x ;
1 1
1 1
2
Trang 232 0
tancos 1 cos
tancos 1 cos
2 0
2 0
2 6
2 0
2 0
tan 1(tan 1)
2 0
2 0
Trang 24Trang 24
3 6
0
tancos 2
0
tancos 2
ln
10
ln
10
x x
3 3
8 4
1sin.coscos
x x
3 3
8 4
1sin.coscos
x x
8 4
8 4
cos cos sin
Trang 25Trang 25
t
1 2 1
cosI
cosI
t
15
2
2 3
1ln( 15 4) ln( 3 2)2
1ln( 15 4) ln( 3 2)2
3cos2
4 2 0
3cos2
Trang 261 0
4
ln 34
1 1
1 0
4
ln 34
cos
u
1 2 1 3
2 2
2 0
arctan2
2 2
2 0
arctan2
Trang 273
2 3
cccooosss
x
3
3cos
JJ
3
3
cccooosss
2 2
31
x
tttaaann2
Trang 28.( 1)1
.( 1)1
Đặt t t x ex e x x11 I I xe xe x x 1 ln1 lnxe xe x x 11 C C x
dx I
Trang 29 x
dx I
e
3ln2
2 3
e
3ln2
2 3
e dx I
e dx I
31
31
1 3 0
0( 2 )
= t t
1 2
0
1 2
02ln( 1)
1 2
02ln( 1) = 2ln3 12ln3 1
http://megabook.vn/
Trang 308 ln
3
8 ln
x x
Trang 31dx I
1 2 0
32
1 2 0
32
3 2 2 1
1
ln3 ln2 3 2 ln15 ln14ln3 ln2
12
12
Trang 32ln(1 ln )
Tính J =
e
x dx
1
ln(1 ln )
4
Trang 33 ln e 1
e I
http://megabook.vn/
Trang 348 3
8 3
d x x 1 1
e x x III III x
Trang 35Trang 35
2 3
x dx
dv
v x
x dx
2
2 1
x x
2
2 1
21
21
2 0
2 0
1
2.ln(1 2)0
2 2
ln( 1)
ln( 1)
Trang 36e e
1 2 1
ln1
1 2 1
ln1
3
.2
3
.2
4
2 0
Trang 37
+ Tính I x e dx x3
1 2 1
4
dx x
2 1
2
6 6
2
6 6
0
14
0
14
Trang 38Trang 38
x x
x
1 2
2 0
1( 1)
1( 1)
.1
x
2
2 0
.1
3
445
3
445
29
29
Trang 39sincos
x x
2
coscos
2
coscos
Trang 40x x
2 3 1
2 3 1
Trang 41cossin
x
2
12sin
2 2 4
2
4 4
sincos
sincos
x x
I 2
0
2
2sin1
)sin(
x
x x
I 2
0
2
2sin1
)sin(
x
2
1tan
Trang 422 3
( sin )sin(1 sin )sin
2 3
( sin )sin(1 sin )sin
Trang 43
x
e dx I
x
2 2
2 0
12cos2
2 0
12cos2
v x
2 2 2
0
ta2
0
tan2
Trang 44cos(1 sin2 )
cos(1 sin2 )
4 6
4 6
Trang 45Trang 45
x x
xdx I
1 sinsin
1 sinsin
Trang 461 1
1 1
11
11
Trang 473 2( )
3 2( )
Trang 48sin1
4sin
4sin
cos
cos ( sin cos )
cos
cos ( sin cos )
2
c
os inscos1s