Bài tập về hệ số công suất _P3Bài 11 Đặt một điện áp xoay chiều u = U0cosωt V vào hai đầu một đoạn mạch AB gồm điện trở R, cuộn dây cảm thuần L và tụ điện có điện dung C mắc nối tiếp.. T
Trang 1Bài tập về hệ số công suất _P3
Bài 11 Đặt một điện áp xoay chiều u = U0cosωt (V) vào hai đầu một đoạn mạch AB gồm điện trở R, cuộn dây cảm thuần L và tụ điện có điện dung C mắc nối tiếp Tụ C có điện dung thay đổi được.Thay đổi C, khi ZC = ZC1 thì cường độ dòng điện trễ pha
4
π
so với điện áp hai đầu đoạn mạch, khi ZC = ZC2 = 6,25ZC1 thì điện áp hiệu dụng giữa hai tụ đạt giá trị cực đại Tính hệ số công suất của mạch
A 0,6 B 0,8 C 0,7 D 0,9
Giải:
tanϕ1 =
R
Z
Z L − C1
= tan(
4
π ) = 1 -> R = ZL – ZC1 -> ZC1 = ZL - R
UC2 = Ucmax -> ZC2 =
L
L Z
Z
R2 + 2
-> 6,25ZC1ZL = R2 +ZL2
-> 6,25( ZL- R) ZL = R2 +ZL2 -> 5,25ZL2 - 6,25RZL – R2 = 0
-> 21ZL2 - 25RZL – 4R2 = 0 -> ZL =
3
4R
ZC2 =
L
L
Z
Z
R2 + 2
=
3
4 9
16 2 2
R
R
R +
= 12
25R
->
cosϕ2 =
2
Z
R
) 12
25 3
4
R
R
−
Bài 12: Đặt điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi vào hai đầu đoạn mạch gồm
biến trở R mắc nối tiếp với tụ điện có điện dung C Gọi điện áp hiệu dụng giữa hai đầu tụ điện, giữa hai đầu biến trở và hệ số công suất của đoạn mạch khi biến trở có giá trị R1lần lượt là UC1, UR1 và cos ϕ1; khi biến trở có giá trị R2 thì các giá trị tương ứng nói trên là UC2, UR2 và cos ϕ2 Biết
1 2
2
U = = Giá trị của cos ϕ1và cos ϕ2 là:
A
3
1 cos
, 5
1
5
2 cos
, 3
1
C
5
2 cos
, 5
1
2
1 cos
, 2 2
1
Giải:
Gọi U là điện áp hiêu dung đặt vào
hai đầu đoạn mạch
2 2
2 2
2 1
2
1
2
C R C
U
Ta có:
2 1
2 1
2 2
2 2
2 1
2
1
4
1
C R C
Suy ra
2 2
4
3
1
2 1
2
R
Z R
U U U
4
2
2 2 2
2 1
1 1
+
= +
=
C C
C
Z Z
R
R Z
R
Trang 2Tương tự ta có:
2 2
2 2
2 1
2 1
2
2
2
4
1
C R
C R C
C R
2 4
3
2
2 2
2
4
2
2 2 2
2 2
2 2
+
= +
=
C C
C
Z Z
R
R Z
R
Chọn đáp án C
Ta có thể tính cosϕ2 = 2cosϕ1 dự theo công thức
cosϕ1 =
U
U R1
và cosϕ2 =
U
U R2
mà UR2 = 2UR1 ->cosϕ2 = 2cosϕ1
Bài 13 Mạch R-L-C nối tiếp gồm điện trở R,Cuộn cảm (L,r) và tụC.Khi hiệu điên thế 2 đầu đoạn mạch
là u = 65 2 cos(ωt) thì các điện áp hiệu dụng trên điện trở và cuộn dây đều bằng 13V.còn điện áp trên
tụ là 65V,công suất tiêu thụ trên toàn mạch là 25W.Hệ sốcông suất của mạch là
A.3/13 B.5/13 C.10/13 D.12/13
Giải: Ud = Ur2 + UL2 = 132 (*)
U2 = (Ur + UR)2 + (UL – UC)2
(Ur + 13)2 + (UL – 65)2 = 652 (**)
Từ (*) và (**) ta tìm được Ur = 12V
cosϕ =
U
U
U R + r
= 65
25 = 13
5
Chọn đáp án B Bài 14: Đặt một điện áp xoay chiều u = U0cos(2πft) V (với f thay đổi được) vào hai đầu đoạn mạch gồm
R, L, C mắc nối tiếp Các giá trị R, L, C là hữu hạn và khác không Khi f = f1 = 30 Hz thì hệ số công suất của đoạn mạch là cosφ1 = 0,5 Còn khi f = f2 = 60 Hz thì hệ số công suất của đoạn mạch là cosφ2 = 1 Khi điều chỉnh f = f3 = (f1 + f2) thì hệ số công suất của đoạn mạch là cosφ3 bằng
A 0,866 B 0,72 C 0,966 D 0,5
) (Z L Z C R
R
− +
Khi f = f2 = 60Hz trong mạch có cộng hưởng : -> LC = 2
2
1 ω
1 1
R
R
−
1 -> 4R2 = R2 + (ω1L - C
1
1
ω )2
-> (ω1L - C
1
1
ω )2 = 3R2 -> 2 2
1
2 2
(
C
LC
ω
=
2 2 1
2 2 2
2
(
C
ω ω
2
2 1
2 2 2
2
(
C
ω ω
ω
ω −
= 3R2
-> 12
R = 12 22 2
2 4 2
2 1
) (
3 ω ω
ω
ω
−
C
(*)
3 3
R
R
−
1
R
Z Z
R + L − C =
2
2 3
( 1
1
R
Z
Z L − C +
Xét biểu thức: A = ( 3 2 3)2
R
Z
Z L − C =
2
2 3
(
R C
L
ω
ω −
= 2 2 2
3
2 2
(
R C
LC
ω
3
4 2
2 2 2
2
(
R C
ω ω
ω
ω −
Thay (*) ta có
C L; r
R
Trang 3A = 2 2
3
4
2
2 2
2
2
(
C
ω
ω
ω
ω −
2 2 2
2 1
2 4 2
2 1
) (
3 ω ω
ω
ω
−
C
= 3 2
3
2 1
ω
ω
2 2 2
2 1
2 2 2
2 3
) (
) (
ω ω
ω
ω
−
−
= 3 2
3
2 1
f
f
2 2 2
2 1
2 2 2
2 3
) (
) (
f f
f f
−
−
= 3 22 90
30
2 2 2
2 2 2
) 60 30 (
) 60 90 (
−
−
A = 3
9
1
9
25
=
27 25
cosϕ3 =
A
+
1
1
= 52
27
= 0,7206 = 0,72 Chọn đáp án B Câu 15: Đặt một điện áp xoay chiều có giá trị hiệu dụng U và tần số f không đổi vào hai đầu đoạn mạch gồm biến
trở R mắc nối tiếp với tụ điện có điện dung C Gọi điện áp hiệu dụng giữa hai đàu biến trở, giữa hai đầu tụ điện và
hệ số công suất của đoạn mạch khi biến trở có giá trị R1 lần lượt là U U c R1, C1, osϕ1 Khi biến trở có giá trị R2thì các giá trị tương ứng nói trên lần lượt là U U R2, C2, osc ϕ2 biết rằng sự liên hệ: 1
2
0,75
R R
U
1
0,75
C C
U
U = Giá trị của cosϕ1 là: A 1 B 1
3 2
Giải:
2
1
R
R
U
U
=
4
3
-> UR2 =
9
16
UR1 (*)
1
2
C
C
U
U
=
4
3
-> UC2 =
16
9
UC1 (**)
U2 = 2
1
R
U + 2
1
C
U = 2
2
R
U + 2
2
C
U = (
9
16 )2 2 1
R
U + (
16
9 )2 2 1
C
U ->
(
9
16
)2 2
1
R
U - 2
1
R
U = 2
1
C
U - (
16
9 )2 2 1
C
U -> 2
1
C
U = (
9
16 )2 2 1
R
U ->
U2 = 2
1
R
U + 2
1
C
U = [(1 + (
9
16 )2] 2 1
R
U -> U =
9
16
92 + 2 U
R1
cosϕ1 =
U
U R1
16 9 9 + = 0,49026 = 0,49 Chọn đáp án C