1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bất phương trình mũ và logarit

19 451 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 715,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu này là tuyển chon hơn 700 bài tập về bất phương trình logarit bao gồm nhiều dạng khác nhau giúp bạn đọc có thể tự rèn luyện khả năng cũng như kĩ năng nhận dạng các loại bài tập logarit cũng như bất phương trình logarit.

Trang 1

BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT

1 xx

x 2

2

2 log

log

3 3

1

3 10 3

x x

x

 0 4 logx(log3(9x - 72))  1

2

1

lnx  x2 x  6 log2x2 2x 3y 8 7 y2 3y

2

3

2log 4 x   3 log 2 x   3 2

1 1

2 1 2 1 2

15 x   x  x

12 2 log5 x logx125  1 13 log  1 log 2 2 log 34  0

3 1 3

14  2 , 5 x  2 0 , 4 x1 1 , 6  0

3 3

1

3 10 3

x x

x

 0 17 4 2 2 21 3 2 2  2 2 2  8  12

x x

x

18   lg 2 1

2

1 3

8 2

log xx  1

20 log93x24x21log33x24x2 21 logx1x 1 logx21x 1

3 2

3 3 3

2

log

2 log log

2 log 2



x

x x

x

1 3 2 5

5 lg

 

x x x x

2

3

2

3

 

x

x

x

x

27 2.2x3.3x 6x1

Trang 2

28

2

1 2

2 4

log 2 

x

x

2 3 2 log 4 4

2 1 2

30 32x  8 3xx4  9 9 x4  0

31 9 x22xx7.3 x22xx1 2

32

x x

2

1 2

1

3 6

8

1 4

34 log5(12x)1log 5(x1) 35 2log2x log2x

36 log log9(3x9)1

) 1 3 ( log

1 )

3 ( log

1

2 2

1

) 3 ( log ) 3 (

3 1 2

2

1

x

x x

2

1 2

x

2

3

2 log 4x 3 log 2x 3 2

42

     

 

2

) 2

1 ( )

2

1

46 22x-1 + 22x-3 - 22x-5 >27-x + 25-x - 23-x 47 3 3 84

1 3 1

x

48 4 2 3  31  2 3 2  2  6

x x x

1 1

) 2 5 ( ) 2 5

  

x x

1

2

1 2

x

x

x

51 7x+7x+1+7x+2=5x+5x+1+5x+2

52 ( 2  1)x22x 1

x

15 34 9

25         

2

x

x

56 4 2 3  31  2 2 3  2  6

x x

x

57 25x3x2 2x2x.3x 25x3x2 4x2.3x

3

1

(

3

)

3

1

(

1 1 2

 x

4 2

3 4

4 3

3

5

4 0,5 21 0,5

62 (x2+x+1)x < 1

63 log4x-3x2>1 64 logx(x3-x2-2x)<3 65 log 4 6 0

5

x x

Trang 3

66 lg2x-lgx3+20 67 1+log2(x-1)logx-14 68 0

1 ) 4 ( log

5

2

x

x

5 4

) 3 (

log

2

2

x

x

x

70

4 1 log

7

1 log log7 xx

72

5

1 log 2 log

14

2 24 log

2

16

25x2  xx

3

1 2 log

2

x

x

64

1 log 12

1 2 ) 6 ( log 2

1

2 2

2 3

2 x   

77

x x

x x

x

x 7 12 )(2 1 ) ( 14 2 24 2 ) logx 2

2

78 log log2log 19 0

2

2

1 2

2 4

x

x

80 log log 5 log ( 3)

2

1

3 1 3

82

4

3 16

1 3 log ) 1 3

(

log

4 1

4 3

) 1 ( log ) 1

(

log

2

3 3

2

x x

x x

85 logx 3(5x2 18x16)2

2 lg

lg

) 2 3

lg( 2

x

x

x

87 log 2x64  logx2 16  3

88 ( 1)log (2 5)log 6 0

2 1 2

2

3

1 (

] 3 ) 2 2 ( [log log 2 lo g 2 1 3

1 2 3

x

x

2

2 3

x

x

x 91 logxlog9(3x-9)1

3 ) 3

9

(

log

1

3

x

x

93. log9(3x2 4x2)1log3(3x2 4x2)

5 log ) 1 3 4

( 2    5  xx2   

x

x x

96 log2x+log2x84 97 1logx2000 2

98 log (2 1)log (2 1 2) 2

2 1

2 1 2

2 log 2

) 5 ( log

) 35 (

x x

a víi: 0<a1

Trang 4

102 log log ( 1 ) log log ( 2 1 )

5 1 3 2

5 2

1 x  xx  x 103 log2xlog32x + log3xlog23x o

104

x

x x

x

3

3 5

5

log

) log 2 ( log 3 log

2 2

2 4 3 2

6 5 5 log ) (

log 6

3 5 2

) 11 4 ( log ) 11 4 (

log

2

3 2

11 2

2

x x

x x x

x

107 2log29 xlog3 xlog3( 2x11) 108 0

1 3 2 5

5 lg

 

x x x

109 Cho 0 < a < b <1 CM BĐT: 2 2

ln ln ln ln

110

2

4

x

2

1 2

0

x

log

112

3

2log (4x 3) log (2x 3) 2 113  2

log 8 logxx log 2x  0

2

1 1 log 2

1 1 3 2

2

2  7.2   7.2   2 0

log 4 144   4log 2  1  log 2   1

        

     

x x

 

 

2 2

2

3

2 4  2 4  2 4 3 3

120 log log2x x2 x

4

2.x x2 x

2

11 6

x

x

x

15.2x   1 2x  1 2x125 logxlog 93 x72 1

126 log   log  2 1 2.

2 1 2

127 logx 1 (x 1 )  (  1 )logx 1x  2

x

2

log xx

x

Trang 5

131

2 6

1 3

1

x

x

132

x x

3 1

1 1

3

1

1   

1 1

2 1

2

2 x  x

2

5 , 0 5

, 0

2

2 5 08

, 0





x x

x x

136 log2 x  log2x 8  4 137 log3 x  log3 x  3  0

138 log1/3 log4 x2  5    0 139 log1/3 x  5 / 2  logx 3

140 logx 2 log2x 2 log2 4 x  1 141 0

5

3 4 log 2

2

x x

x x

2

1 log

3

x

x

6 log

1 2

log 2 log

2 16

x x

144 log 2 2 x  1

x 145 log log9 3x  9   1

2

2 3

x

x

147 log 2 3  1

3   x

x

x 148 logx 5 x2  8 x  3   2

149

 1 

log

1 1

3 2

log

1

3 / 1 2

3

/

log

1

log

a x

x

a

log

35

a víi x

x

a a

0 3

5 2

11 4

log 11

4 log

2

3 2

11

2 2

x x

x x

x x

153 log12/5( x  5 )  3 log5 5( x  5 )  6 log1/25( x  5 )  2  0

154 log23 x  4 log3 x  9  2 log3 x  3

16 2

2

2 /

156 log2 x2  3  x2  1   2 log2 x  0

157 logcosx sin x  logsin2x cos x 158 3x  9 3x  10  0

16

1 4

1

4

1

3

1 9 3

1 2/ 2 1/ 

161 52 x  5  5 x1  5 x

162  7  4 3  x  7  4 3 x  14

163 5 4x  2 25x  7 10x  0

x x x

Trang 6

165 92xx21  34 152xx2  252xx21  0

166 log2 2x  1  log1/2 2x1  2    2

1 1

2 5 2

x x

1 2

1 2

x

x x

2 2

2 1 2

2

2 3

2 3

x x

x x

171 6 92x2x  13 62x2x  6 42x2x  0

172 log  2  . log 2 2 2 0

2

173 1  2x1  3x1  6x

174 25 2x  10x  5x  25

175 log2 x2  3  x2  1   2 log2 x  0

176 x  1  log12/2 x   2 x  5  log1/2 x  6  0 177 4  8 x1   2 x1  8 

e x x e

x

178 4 2  3  31  2 3 2  2  6

x x

x

x x

x x

x

 

180

6

x x 2

2x 1 3x 1

2

x x

1 5    25

183 (x2   x 1)x  1 184

x 1

   185 (x2 1)x22x  x213

186 3x 9.3x 100 187 5.4x  2.25x  7.10x  0

188 x 11 1 x

190 25.2x  10x  5x  25 191 9x  3x 2  3x  9

8

3

log  log x  5   0

5

log x  6x   8 2 log x  4  0

3

5

2

log  log 3  9   1

198 log 2.log 2.log 4x 1x 2x 2  199 1

3

x

200 log2 x    3  1 log2 x 1   201 8 1

8

2

2 log (x 2) log (x 3)

3

2

log  log x  0

Trang 7

204

2

3 2

2

log xlog x1

2x

3x x

log  3 x   1

208

2

2 3x

x 1

5

2

3

x 1

      

210 log x22 log x2 0 211 x x

2 16

1 log 2.log 2

212 log x32  4 log x3   9 2 log x 33 

2

log x4 log x  2 4log x

214

2

log x log x

3

2 log 2x log x 1 x

x

2

log 2  1 log 2   2   2

2

0

log x   x 2  log   x 2x  3 thõa mãn với 9

x 4

219

x

0

  

10 3

x x

x

Tìm n0 dương

221

3

2

5x  x  1 223

1

5

25

x

224

40 1

4 3

2

2 2

1 3

3

x

   

     225.22 1x  22x3 22x5 27x 25x  23x

226 51x 51x 24 227

7

2

2

1

7 7

x

 

3

2 log 2

229 52x1  5x  4 230.49x  6.7x   7 0 231.9x  2.3x  3

232 25  x2 2x 1 9  x2 2x1  34.15 x2 2x 233

234

2

log log

6 xx x  12 235 8logx  19.2logx  6.4logx  24  0

Trang 8

236 5.36x 2.81x 3.16x 0 237 2.(5x 24) (5x 7)  (5x 7)

238 13x  5 2(13x 12) 13x 5 239 4 2 4

2 1

x

x x

241

1

1

5

x

243 4 x2  x 2x21 3.2x2  x2.2x2  8 x 12 244 8  2 3 x 1 4 3x  2 3 x 1 5

245

2

log log 4

10000

2 1

x

247

2

1

2

log 3

2

x

x

249   2 6 8

x

x

253 52x  52 2 x  26 254

x

x

256 9x  4x  2.6 x 257 9.9x  25.12x 16.16x  0

258 62x 3 4x x  6.22x 259 5 32 2x  3 52 2x  34.15x

260

x

>0

2x 2

x

0

xx

262

2x

2

0

x x

>0

x x

264 32x2 2x 128.3x2x 9 0 265 22x2 4x 24.22x x 2 1 2 0

266 9x2 x 110.3x2 x 2 1 0 267

2 2

2

x 2 1

3

x x x

    

 

 

268 32x+122x15.6x 0 269 23x+17.22x 7.2x  2 0

2

3log (x2)6log (x  1) 2

Trang 9

273

log (x 1)  logx 64  1 274

3

log (134 )x 2

275

2

1

x

2

1

x x

  

277 1

4

log

x

x

 

1 2

log 1  x x  4  0

1

5

3

1

3

x   x  

281 log (22   x x2   1) 1 282

log x 6 log (x4)

283

1 log ( 8) log ( 4)

285

2

log (3 2 ) 1

8 2

x

x  

x

2log xlog x4

3

2

7

3

2

25

2 lgx   (1 2) lgx  2 2

(log x)  32(1 3)log x 302 2

4

log (2 x)  8log (2 x)  5

303 2

5

log (6 x) 2log (6 x) log 270 304 2

2 log 1

2

x

2

log ( 4 11) log ( 4 11)

0

2 5 3

2

log ( 2 7) log ( 2 7)

0

3 13 4

 

Trang 10

307

2 2

5

x

x x

5

log (6x 36 )x  2

309

2 3

3

4

311

2

2

log x64 log 16 3

x

  

log (5x x  8x 3)  2 314 2

3

1 log 5 6 log 2 log ( 3)

2

x   x x  x316 2

6log 1 x  log (x   1) 5 0

317 log (90.5 x1  1) 2 log (30.5 x17) 318

2

2 log log 2

x

2

log ( 1) log ( 1)

0

log (3x    4x 2) 1 log (3x  4x 2)

321 (4x  12.2x  32)log (22 x   1) 0 322

2

1 1

3 3

log ( 1)

323

2

2

0 log (2x 1) log x 3x 2 

1

x x

3

log (2x 3x  2) 1 log (2x 3x2)

32

8

x

x

   

    

 

 

328

log log 2 log 1 3

2

2

2 3

1

1 3

x

x

     

 

 

3

331 log x log x log x 1 3  9  27  332  2   2 

lg x  3 x  7  lg x  10

2

3log x 3log 3x log 2

2

x

4

337 2lgx 3lg100x 2 2lg10x    2 338 lnx +2lnex-lne x lne 2 3 

339 3logx 3log10x 2 log100 2log100x  340 log x 3 log x 1 3 2   2  

Trang 11

341 log x 3 log x 12   2   log 5 2 342 log x log x 1 1 2  2  

343 ln x+1 ln x 3     ln x 7   344 log 2x 22  log 24 2x 2

345 2    2  

1

log 2x 4 1 log 1 x

347 1   1  

352 log x log x 32  2   2 353 2ln x 3lne x lne 0 2  2  

100 log x 10log x 6 0

356 log x log 7 log 49 7  x  7 357 log x log 2 log 4 2  x  2

358   x

2

3

360   x 

2

5-lgx 1 lgx

7

364  x  

2

log ( ) log 9.log 4 log

3

x

    367 log log 22x 2 xlog2xlog 42 x

368 log 64 log 162xx2 3 369

2

log 3l ogx+3

1 log 1

x x

4

log (3 1).log

x

371

1

( 5 2) ( 5 2)

x

( ) ( )

xx  x

373

1 2

2

16

x

x   

2x 2x  2x   3x 3x  3x

375 2 3 2 2 3 3 2 3 4

2x x .3x x .5x x  12 376

( 10 3) ( 10 3)

Trang 12

377

2

5 6

3

3 x x x

2 x x 1

x  

( 2 1) ( 2 1)

x

382 2

1

3

3

x x

x x

 

  

    383  2 

1 x 1

x  x384 9x 2.3x  3 0

385 2 6 7

2 x  2x  17  0 386 3

2 x2 x 9 387 2.49x 7.4x 9.14x

4x 3.2xx  4 x

6.9 xx 13.6 xx 6.4 xx 0 391 2 1 2

4xx.3 x 3 x  2 3x x 2x 6

392

2

1

x x

x x

     

2 2

2

3

x x

x x

    

 

1

     

395 1 2 1 2

x

2

2.3 2

1

x x

x x

2 1

x x

      

16

x

399 log (3 2) 1

2

x

x

x

3

2log (4 3 ) log (2 xx 3) 2

401

2

4

x

x x

 

1 log 5 6 log 2 log ( 3)

2

404 logxlog (93 x72)1 405 2

log (5x x  8x  3) 2

406 log 64 log 16 2x 2 3

x

2

2

lg lg 2

x

4 2x 3.2x .2x 8 12

409

6

x x 2

2x 1 3x 1

2

x x

1 5    25

412 (x2   x 1)x  1 413

x 1

(x 1)   x 1

415 5.4x  2.25x  7.10x  0 416 x 11 1 x

417 52 x   5 5 x 1  5 x 418 25.2x  10x  5x  25

Trang 13

419 9x  3x 2  3x  9 420  2   

5

log x  6x   8 2 log x  4  0

3

5

2

log  log 3  9   1

423 log 2.log 2.log 4x 1x 2x 2  424 1

3

x

425 log2 x    3  1 log2 x 1   426 8 1

8

2

2 log (x 2) log (x 3)

3

2

log log x 0

429

2

3 2

2

log xlog x1

2x

3x x

log  3 x   1

433

2

2 3x

x 1

5

2

3

x 1

435 log x22 log x2 0 436 x x

2 16

1 log 2.log 2

437 log x32  4 log x3   9 2 log x 33  438 2  4

2

log x  4 log x  2 4  log x

439

2

log x log x

3

2 log 2x log x 1 x

x

2

8

log x  4x   3 1

3

log  log x  5   0

x

0

   

3

2 0,7 6

4

x

log 4x  144  4 log 2 1 log   2x  1 450

2 1 2

x

  

451 log0,55x10log0,5x2 6x8 452 log2x3log2x21

Trang 14

453 log2x3x21 454 0

1

1 3 log 2 

x

x

455 2x2 4x1

4

1

 x

457 log 1 log log9 1

9 1



3

459 log4 x3 1 460 152x + 3 > 53x + 1.3x + 5

461 6log x xlog6x 12

2

6   462 2x 3x1 5x2 12

463 3x  3 x2 8  0

464 log22 x log24x 4  0

1 1

1

9 4 6 5

4

.

9      466 4 x25x  2 x25x2   4

2 3 2

log 4 4

2 1 2

1 1

2 2 3 2

2

x x

469 1 lg lg 2 lg 2

3 2 6

4 xx   x 470 log4x2  23log4x1

x

471 logx125x log225x 1 473 x2 logx27 log9 xx 4

474

1 3

1 5

3

1

1

x

2 log

2 log log2

a x

x x

a

a a

476 4  log 3x  243

x 477 32lgx  3lgx25  2

478 6 9 x2x  13 6 x2x  6 4 x2x  0 479     x

3

2 1

10 1

10  log3x   log3x 

x 1

1 x

2

481 log2logx3  log3logx2

482 logx 1 (x 1 )  (  1 ) logx 1x 2

x

6

1 3

1

2   x

x x

3 1

1 1

3

1

1 1 2 1

2

2

xx

487  log log 2 1

5 , 0 5

, 0

2

2 5 08

,

0





x x

x

2 1 )

1 (

489 log3x log3x30 490 log1/3log4x2 5  0

491 log1/3x 5 / 2  logx3 492 logx2 log2x2 log24x 1

Trang 15

493 0

5

3 4 log 2

2

x x

x x

2

1 log

3

x

x x

495

6 log

1 2

log

2

log

2 16

/

x x

497 log log93x91

2

2 3

x

x

499 log 3xx23 x 1 500 logx5x2 8x 3 2

1 1

3 2

log

1

3 / 1 2

3

/

log 1

log

a x

x a a

5

log

35

a víi x

x a

0 3

5 2

11 4 log

11 4 log

2

3 2

11 2

2

x x

x x x

x

505 log12/5(x5)3log5 5(x5)6log1/25(x5)20

506 log23x4log3x92log3x3 507  4

16 2

2 2 /

508 log2 x2 3x212log2x0 509 logcosx sinx logsin2xcosx

8 15 4 15

4

x x x

511 92xx21 34 152xx2 252xx21 0

512 log22x 1log1/22x1 2  2

1 1

2 5 2

x x

1

2

1 2

x

x

x

515 3 5 3 5 2 2 0

2 2

2 1 2

2

xx xxxx

2

3

2

3

 

x

x

x x

517 6 9 2x2x 13 6 2x2x 6 4 2x2x  0

518 log2x22.log2x220 519 x 1log12/2x2x 5log1/2x 6  0

520 4 8 x1  2 x1 8

e x x e

x x x

x x

x x

x

 

523 25x3x2 2x2x.3x 25x3x2 4x2.3x

524 1 log 3

81

x

log (x 3 )x  log (3x 1)

x x

 

 

2 2

2

3

Trang 16

528 3x + 1 – 22x + 1 – 12x/2 < 0 529 log25x2log5x150

530 log (3 x 1) log (113  x) 3 531    2 1 

log 4x4 log 2 x 3.2x

532 log (log (93 x 72)) 1

log (4x 144) 4log 2 1 log (2    x  1)

534  3  9

3

4

1 log

x

x

x

log 8 logxx log 2x 0

2

log x 4.log x  2.(4 log  x )

2 4

log log x 2xx 0

  539 log 5 5 x 4  1 x

3

2 log (4x 3) log (2x 3) 2 541    

3 2

4 3

2 3

2 2

xxxx

x

x

2 1 2

2

3 2

2 1 4

8 log





0 4

3

1 log 1

log

2

3 3 2

x x

x x

1

x x

1 log log

1

x x

546 log 5 3x 4 log 5 1  x  547

3

x - 2

x

548

2

(log x) log x

1 log x 5x 6 +log x 2 log (x 3)

2

550 log x2 log x-12 log x - 22

2 1 2

x

  

2

1 2 log

6 5 log

3 1 3

1 2

) 1 ( log

1 1

3 2 log

1

3 1 2

3

1

3 2

x

x

5

x

x

556 1+log2(x-1)logx-14

1 ) 4 (

log

5

2

x

x

5 4

) 3 ( log

2

2

x x

x

559

4 1 log log29 x 23  x

7

1 log log7 xx 561

5

1 log 2 log

Trang 17

562 logx2.log2x2.log24x>1 563 1

14

2 24 log

2

16

3

1 2 log

2

x

x

565

64

1 log 12

1 2 ) 6 ( log

2

1

2 2

2 3

2 x   

2

567

x x

x x

x

x 7 12 )(2 1 ) ( 14 2 24 2 ) logx 2

2

568 log log2log 19 0

2

2

1 2

2 4

x

x

570 log log 5 log ( 3)

2

1

3 1 3

572

4

3 16

1 3 log ) 1 3

(

log

4 1

573 log12x4x284x5 0

4 3

) 1 ( log ) 1 (

log

2

3 3

2

x x

x x

575 logx 3(5x2 18x16)2

2 lg lg

) 2 3

lg( 2

x

x x

578 ( 1)log (2 5)log 6 0

2 1 2

2

3

1 (

] 3 ) 2 2 ( [log log 2 lo g 2 1 3

1 2 3

x

x

2

2 3

x

x

25 1 5

5 2

5

16

31 2 ( log

log2 0,5 x  

583 log2x4  32

1

2 lg 2

1

2 lg 4

2

2 2

x x x

x

3 ) 3 9

(

log

1

3

x

x

586 log9(3x2 4x2)1log3(3x2 4x2)

5 log ) 1 3 4

( 2    5  xx2   

x

x x

588 log2(2x+1)+log3(4x+2)2 589 log2x+log2x84

590 1logx2000 2 591 log 6 log 3 log ( 2 )

3 1 3

1 2

592 log2(2x 1)log1(2x12)2

593 log22 xlog1 x2 3  5(log4 x2 3)

Ngày đăng: 21/09/2015, 12:24

TỪ KHÓA LIÊN QUAN

w