1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bài tập Hình học 11.

4 1K 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 165,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lưu Phi Hoàng Bài Tập chương II Hình Học 11Bài Tập ôn chương II I QUAN HỆ SONG SONG 1 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M, N, P lần lượt là trung điểm của AB, CD, SA..

Trang 1

Lưu Phi Hoàng Bài Tập chương II Hình Học 11

Bài Tập ôn chương II I) QUAN HỆ SONG SONG

1) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M, N, P lần lượt là trung điểm của AB, CD,

SA Chứng minh SCP(MNP)

2) Cho hình hộp ABCD.A’B’C’D’ Gọi M, N lần lượt là trung điểm của AD, C’D’.CMR:

( ' )

3) Cho tứ diện đều ABCD cạnh a và một điểm M thuộc cạnh BC, đặt BM = x ( 0 ≤ x ≤ a )

a Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng đi qua M và song song với các cạnh

AB

, AD .Tính chu vi và diện tích thiết diện theo a , x

b Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng ( P đi qua M và song song với các cạnh AB

, CD .chứng minh rằng chu vi của thiết diện không phụ thuộc vào vị trí của điểm M trên cạnh BC

3) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành Xác định thiết diện của hình chóp cắt bởi

( )

mpα đi qua trung điểm M của AB và song song với BD và SA

4) Cho hình chóp S.ABCD có đáy ABCD là 1 tứ giác Gọi O là giao điểm của AC và BD Xác định thiết diện của hình chóp cắt bởi mp( )α đi qua điểm O và song song AB và SC

5) Cho hình chóp S.ABCD có đáy ABCD là hình vuông, tâm O Mặt bên SAB là tam giác đều, ngoài ra

90

SAD= Gọi Dx là đường thẳng qua D và song song với SC

a) Tìm Giao điểm của Dx Với mp(SAB).CMR AI//SB

b) Tìm thiết diện của hình chóp với mp(AIC) Tính diện tích thiết diện

6) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành Gọi I, J, K lần lượt là trung điểm của SA,

SB, SC

a) Tìm giao điểm L của SD và (IJK)

b) Chứng minh IL/ /AD , KL CD / /

c) Gọi M là giao điểm của CJ và DI, N là giao điểm của BI và CL chứng minh (SMN) / /(ABCD) 7) Cho hình chóp S.ABCD có đáy ABCD là hình thang , đáy lớn AB gọi I, J, K là 3 điểm trên SA, AB,

BC theo thứ tự đó

a) Tìm giao điểm IK với (SBD)

b) Tìm giao điểm của mp(IJK) với SD và SC

8) Cho hình chóp S.ABCD Gọi I, J là 2 điểm trên cạnh AD và SB

a) Tìm giao điểm K, L của IJ và DJ với mp(SAC)

b) AD cắt BC tại O, OJ cắt SC tại M chứng minh rằng 4 điểm A, K, L, M thẳng hàng

9) Cho tứ diện ABCD Gọi A’, B’, C’, D’ lần lượt là trọng tâm các tam giác BCD, CDA, ABD, ABC

a) chứng minh rằng AA’, BB’ cùng nằm trong một mặt phẳng

b) Gọi I là giao điểm của AA’ và BB’ chứng minh ' ' 1

3

IA = IB = c) Chứng minh các đường thẳng AA’,BB’, CC’, DD’ đồng quy

10) Cho hình chóp S.ABCD có đáy ABCD là hình thang , đáy lớn AB gọi M và N lần lượt là trung điểm của SB, SC

a) Tìm giao tuyến (SAD) và (SBC)

b) Tìm giao điểm của SD với (AMN)

c) Tìm thiết diện của hình chóp S.ABCD với (AMN)

11) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, Gọi M là trung điểm củaSC

a) Tìm giao điểm I của AM với mp(SBD) CMR IA= 2IM

b) Tìm giao điểm F của của SD với mp(ABM) Cmr F là trung điểm của SD và tứ giác ABMF là hình gì ?

c) Gọi N thuộc AB Tìm giao điểm MN và (SBD)

13) Cho hình chóp tứ giác S.ABCD Trong tam giác SCD lấy điểm M

a) Tìm giao điểm của BM với (SAC)

b) Tìm thiết diện của hình chóp với (ABM)

14) Cho tứ diện đều ABDC cạnh a Kéo dài BC một đoạn CE=a Kéo dài BD một đoạn DF=a Gọi M là

Trang 2

Lưu Phi Hoàng Bài Tập chương II Hình Học 11

a) Tìm thiết diện của tứ diện với (MEF)

b) Tính diện tích thiết diện theo a

15) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, Gọi M, N, P lần lượt là trung điểm của SB, SD và OC

a) Tìm giao điểm của SA với (MNP)

b) xác định thiết diện của hình chóp với (MNP)

16) Cho tứ diện ABCD Gọi I, J lầ lượt là trung điểm của AC và BC Trên cạnh BD lấy điểm K sao cho BK=2KD

a) Tìm giao điểm E của CD với (IJK) Cmr DE=DC

b) Tìm giao điểm F của AD với (IJK) Cmr FA=2FD

c) Cmr : FK//IJ

d) Gọi M, N là hai điểm bất kỳ lần lượt trên AB, CD tìm giao điểm cùa MN với (IJK)

17) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành

a) Tìm giao tuyến của (SAD) và (SBC)

b) Lấy M là điểm tùy ý trên SC nhưng không trùng với S mp(ABM) cắt SD tại N Tứ giác ABMN

là hình gì ?

18) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành Gọi H,K,I,J lần lượt là trung điểm của các cạnh SA,SB,SC,SD

a) CMR: HKIJ là một hình bình hành

b) Gọi M là điểm bất kỳ trên BC Tìm thiết diện của hình chóp với (HKM)

19) Cho tứ diện ABCD Gọi M,N,P,Q , R, S lầ lượt là trung điểm của AB, CD,BC,AD,AC và BD

a) CMR: MPNQ là hình bình hành

b) CMR: MN,PQ,RS đồng quy

20) Cho tứ diện ABCD Trên AD lấy N sao cho AN=2ND, M là trung điểm của AC, trên BC lấy Q sao cho 1

4

a) Tìm giao điểm I của MN với (BCD).Tính IC ?

ID= b) Tìm giao điểm J của BD với (MNQ) Tính JB ?

JD = 21) Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng

a) Gọi O và O’ lần lượt là tâm của ABCD và ABEF CMR OO’//(ADF) và OO’//(BCE)

b) Gọi M, N là trọng tâm của tam giác ABD và ABE CMR : MN//(CEF)

22) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành Gọi M, N lần lượt là trung điểm của các cạnh ABvà CD

a) CMR: MN//(SBC) ,MN//(SAD)

b) Gọi P là trung điểm của SA CMR: SB//(MNP), SC//(MNP)

23) Cho tứ diện ABCD Trên AD lấy M sao cho AM=MD, trên BC lấy N bất kỳ Gọi (α ) là mặt phẳng chứa MN và song song với CD

a) Tìm thiết diện của tứ diện với mp(α )

b) xác định vị trí của N trên BC sao cho thiết diện là một hình bình hành

24) Cho hai hình vuông ABCD và ABEF không cùng nằm trong một mặt phẳng.trên AC và BF lấy M,N sao cho AM=BN Các đường thẳng song song với AB kẻ từ M,N cắt AD,AF tại M’,N’

a) Cmr mp(BCE)//((ADF)

b) CMR: (DEF)//(MNN’M’)

25) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O Gọi M,N lầ lượt là trung điểm của SA,SD

a) CMR: (OMN)//(SBC)

b) Gọi P,Q lần lượt là trung điểm của AB và ON.CMR: PQ//(SBC)

26) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành Gọi H, I, K lầ lượt là trung điểm của SA,

SB, SC

Trang 3

Lưu Phi Hoàng Bài Tập chương II Hình Học 11

a) CMR: (HIK)//(ABCD)

b) Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI CMR: (SMN)//(HIK)

27) Cho hình lập phương ABCD.A’B’C’D’cạnh a Gọi M, N, P lần lượt là trung điểm của AB, B’C’, DD’

a) CMR: (MNP)//(A’B’D) và (BDC’)

b) Xác định thiết diện của hình lập phương với mp(MNP)? Thiết diện là hình gì? Tính diện tích thiết diện

28) Cho hình lăng trụ tam giác ABC.A’B’C’

a) Gọi I, K, G lần lượt là trọng tâm các tam giác ABC, A’B’C’, ACC’ CMR: (IGK)//(BB’C’C) và (A’KG)//(AIB’)

b) Gọi M, N lần lượt là trung điểm của BB’ và CC’ hãy dựng đường thẳng qua trọng tâm tam giác ABC cắt AB’ và MN

29) Cho hình hộp ABCD.A’B’C’D’ có các cạnh AA’, BB’, CC’, DD’song song với nhau

a) CMR: (BDA’)//(B’D’C) b) CMR đường chéo AC’ đi qua trọng tâm G1 và G2 của hai tam giác BDA’ và B’D’C

c) CMR: G1 , G2 chia đoạn AC’ thành 3 phần bằng nhau

30) Cho hình lập phương ABCD.A’B’C’D’ E F, G lần lượt là trung điểm của AA’, BB’, CC’ Chứng minh rằng:

a) (EFG)//(ABCD) b) xác định giao tuyến của hai mặt phẳng (ABD) và (C’D’D) c) Tìm giao điểm của A’C và (C’BD)

II) VÉC TƠ TRONG KHÔNG GIAN

1) Cho tứ diện ABCD.Gọi E, F lần lượt là trung điểm của AB, CD.I Là trung điểm của EF

a) CMR: IA IB IC ID Ouur uur uur uur+ + + =ur b) CMR: MA MB MC MDuuur uuur uuur uuur+ + + =4MIuur (M Tùy Ý) 2)

III) QUAN HỆ VUÔNG GÓC

24) Trong mp(α) cho tam giác ABC vuông tại A µB=600 AB=a Gọi O là trung điểm của BC Lấy điểm S ở ngoài mp(α ) sao cho SB=a và SBOA Gọi M là một điểm trên cạnh AB, Mặt phẳng (β ) qua M

và song song với SB và OA cắt BC,SC,SA lần lượt tại N, P, Q đặt BM=x (0p px a)

a) Chứng minh MNPQ là hình thang vuông

b) Tính theo a,x diện tích hình thang này Tìm x để diện tích hình thang là lớn nhất

25) (3)Cho hai hình chữ nhật ABCD và ABEF không cùng nằm trong một mặt phẳng và thỏa mãn các điều kiện : AB=a; AD=AF=a 2; đường thẳng AC vuông góc với đường thẳng BF Gọi HK là đường vuông góc chung của AC và BF(H thuộc AC , K thuộc BF)

a) Gọi I là giao điểm của đường thẳng DF với mặt phẳng chứa AC và song song với BF Tính tỉ

số DI

DF

b) Tính độ dài đoạn HK

c) Tính bán kính mặt cầu nội tiếp tứ diện ABHK

26) Cho hình lập phương ABCDA’B’C’D’ có cạnh bằng a Hai điểm M,N chuyển động trên hai đoạn thẳng BD và B’A tương ứng sáo cho BM=B’N=t Gọi ,α β lần lượt là các góc tạo bởi đường thẳng

MN với các đường thẳng BD và B’A

a) Tính độ dài MN theo a,t Tìm t để độ dài MN ngắn nhất

b) Tính ,α β khi độ dài MN ngắn nhất

c) Trong trường hợp tổng quát chứng minh hệ thức 2 2 1

os os

2

27) Cho hình chóp S.ABCD có đáy ABCD là hình vuông SA⊥(ABCD) chứng minh rằng :

BC⊥(SAB), DC⊥(SAD),DB⊥(SAC)

Trang 4

Lưu Phi Hoàng Bài Tập chương II Hình Học 11

28) Cho hình chóp S.ABCD có đáy ABCD là hình vuông SA⊥(ABCD) gọi H,I,K lần lượt là hình chiếu vuông góc của A xuống SB, SC, SD chứng minh rằng :

a)SC⊥(AHK), I∈(AHK)

b) HK ⊥(SAC), HKAI

29) Cho hình chóp S.ABC có SA⊥(ABC) Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC chứng minh HK ⊥(SBC)

30) Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A,B BA=BC=a,AD=2a,

SAABCD CMR tam giác SCD vuông

31) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật , AB=a,AD=a 2,SA⊥(ABCD) M là trung điểm của AD.CMR: (SBM)⊥(SAC)

32) Cho hình chóp S.ABC có đáy ABC vuông tại B, AB=a, BC=2a ,SA⊥(ABC), SA=2a, Mlaf trung điểm của SC CMR: Tam giác ABM cân tại M Và tính diện tích

33) Cho hình chóp S.ABCD có đáy ABCD là hình vuông, Mặt bên (SAD) là tam giác đều và vuông góc

với đáy M,N,P lần lượt là trung điểm của SB,BC,CD CMR: AMBP

34) (46) Cho tứ diện OABC có các cạnh OA, OB, OC, đôi một vuông góc với nhau và OA=OB= OC=a Gọi K, M, N lần lượt là trung điểm các cạnh AB, BC, CA Gọi E là điểm đối xứng của O qua K và I là giao điểm của CE với mp(OMN)

a) CM CE vuông góc với mp(OMN)

b) Tính diện tích cử tứ giác OMIN theo a

35) (45) Cho tứ diện SABC có SC=CA=AB=a 2, SC⊥(ABC), Tam giác ABC vuông tại A, các điểm

M thuộc SA và N thuộc BC sao cho AM=CN=t (0< <t 2 )a

a) Tính độ dài đoạn thẳng MN

b) Tìm Giá trị của t để MN ngắn nhất

c) Khi đoạn thẳng MN ngắn nhất , CM : MN là đường vuông góc chung của BC và SA

36) Cho hình chóp S.ABC có AB=AC=a, ·CAB=2α , SA⊥(ABC) Gọi I là trung điểm của BC HASI

a) chứng minh HA⊥(SBC) Tính AH

b) K AI,AK x

AI

∈ = , mp(R) qua KAI, cắt AB, AC, SC, SB lần lượt tại các điểm M, N, P, Q MNPQ là hình gì? Tính diện tích MNPQ

36) Cho hình chóp ABCD có AB⊥(BCD),BECD DF; ⊥CB O BE; = ∩DF DK; ⊥CA Gọi H, là trực tâm của tam giác ACD chứng minh (ABE) (⊥ ADC);(DFK) (⊥ ADC OH); ⊥(ADC)

Ngày đăng: 05/07/2015, 21:02

TỪ KHÓA LIÊN QUAN

w