Luận văn Thạc Sĩ toán học-ngành Toán Giải Tích -Chuyên đề : Hàm Suy rộng CoLombeau
Trang 1CHUaNG I
VIEHAM COLOMBEAU
I T~P' H<)PtYiq
.Dinh nghla 1.1:
Voi q = 1, 2, ta gQi udq la t~p hQp cac ham cp E @(Rll) thoa cac di~u
ki~n sail:
f <pet)dt = 1
R"
Ita <p(t)dt = 0
R"
vail:::; lal:::; q
.H~ qua 1.2:
n Vai ~(A) = (27r)-Z fe-iAx<p(x)dx, (A E Rll) la anh Fourier cua cp(x) thuQc udq,
ta co:
n
ii) Da ~(O) =0, 1:::; I a I :::;q
Chang minh:
i) ~(O)=(27r)-z f <p(x)dx =(27r)-Z
R"
-ii) Theo [1] ta co «iA)~Da ;)(A) =D~((-ix)a cp(X))(A)
5
Trang 2ChQn~= (0, 0, , 0) ta co
f
R"
-Bjnh Ii 1.3:
i) ,;4q =I-0 voi mQi q = 1,2,
ii) ,;41 =:;,;42 =:; =:;,;4q =:; ;4q+1=:;
CX)
iii) n ,;4q= 0
q=l
(Vlly do ky hi~u lien chI chung minh tHrong hQp n = 1)
i) GQi <pet)E YJ(R) thoa f<p(t)dt= 1 (trong rdJ(R)hi€n nhien co ham nhu
R
v~y)
Bay giO ta xet day ham sail day:
<P1(t)= <pet)+ al<P'(t)
<Pq+1t = <Pqt + aq+1<P (t)
Ta luon tIm duQc aq thich hQp thuQc C d€ <PqE dq
Th~t v~y:
Voi q = 1 ta co:
f<pj(t)dt = f<p(t)dt+ a} f<p'(t)dt
= 1 + al.O
= 1
Trang 3Jt<pj(t)dt = Jt<p(t)dt+aj Jt<p'(t)dt
= Jt<p(t)dt - a] J<p(t)dt
= Jt<p(t)dt-a\
R
R
Voi q tuy Y thuQc N: quy n~p theo q ta se tim duQc aq E C d€ CPqE ,Jdq
ii) DuQc suy ra tn!c ti6p tu dinh nghla.
iii) Gia sa
(jJ
q =1
=> t6n t~i cP E ~q, q = 1, 2,
Theo [1], voi dinh ly Paley-Wiener ta co:
A
<p(~),~ E <C
la ham nguyen thoa: yoi mQi N > 0, t6n t~i CN > 0, yoi mQi~E C ta d~u co:
I
I\
(.\:) I < CNexp(Rllm~l) (1) U 1, ?;:: " ?,.:'
d" b/
k/
hR
cP '? - N ' R a qua cali tam (j goc tQa Q, an III ,
/\
chua Stipp cpoKhai tri€n Mclaurin ham nguyen cp(~) t~i g6c tQa dQ va sa d\lng
1\
Do cp(O) = 0 voi mQida chI s6 a (I a I ~ 1) ta thu duQc:
cp(~) = cP(0) = (2;r) -2:, voi mQi ~ E <C.
7
Trang 4Khi lay ~E R va cho I ~I c1ulOn, ta se co c1U<;1cmall thu~n voi bat c1~ng thuc (1)
V~y
r:JJ
n ~q = 0.
q=l
II s6 PHUC SUYRONG
.Djnh nghla 1.4:
Voi cp(x) E QlJ(Rn), ta c1i;itCPE(X)= ~cp
(
~
J, x ERn, E > O.
Tli c1inhnghla 1.1, 1.4 va dung phudng pha p c16ibie'n s6 ta d~ dang chung minh c1lfdch~ qua sail c1ay
.Hf qua 1.5: Ne'u cP E ,>:iqthl CPEE ~q
Djnh nghla 1.6:
i) $'0 la t~p hQp cac ham R(cp) tli ,->:ilVaGC
ii) $'M la t~p h<;1pcac ham R trong $'0 ,thoa c1i~uki~n: t6n t'.li s6 tlf nhien
dudng C va 11c1€I R( CPE) I ~ ~, '\IE E (0, 11).
E
T6n t'.li s6 tlf nhien N E N va day y E r (N, y phl;l thuQc R) saG cho voi
m6i cP E ,>:iq (q ~ N) c1~u tlm c1u<;1c2 s6 dudng C va 11c1€ I R(CPf;) I ~ CEy(q)-N,
'\IE E (0, 11).
.Djnh ly 1.7:
i) $'M la mQt vanh voi phep cQng va nhan anh X'.l
ii)J la mQtIc1eancua $'M
(Chung minh c1inh ly nay xin trlnh bay (j ph~n phl;l chudng)
Trang 5.fJjnh nghla 1.8:
T~p hQp cac s6 phuc suy r<)ng la vanh thudng ~M /J, ky hi~u la C.
ZE <Cta co j(z) =R( CPIJ+ J
ddoR(CPE)=Z, Vcp E~Y11,V8>0
Chang minh:
+ j la anh x:;t VI: chc,>llN =1=> V cP=~Y11 ta co:
8
+ j la d6ng c§u vanh: hi~n nhien
+ j la don anh VI:
n€uj(z) = 0 E C.
=> R(cp) EJ
=> T6n t:;ti s6 N E N va day y E r d~ vdi cPE ~~q (q :2:N) d~u co hai s6 du'ong C, 11sao cho
8
va cho 8 ~ 0+
Suy ra z = 0 E C
Tli m~nh d~ tren ta co z EJ q Z=0 (duQc hi~u theo nghla nhung)
ID.HAMSUYRONGCOLOMBEAU
Ky hi~u: ~O[Rll] la t~p hQp cac anh x:;t R tli ~l x Rll vao <Cma khi c6
dinh cPta duQc R( cP,x) khcl vi mQi c§p theo x
9
Trang 6.EJjnh nghia 1.10:
T~p h<jp $'M[Rll] g6m cac ham R(cp, x) trong $'0[Rll] thoa vdi mQI
t~p compact K c Rll va da chi s6 a d~u t6n tqi s6 h! nhien N EN sao cho vdi
m6i cp E JiN d~u Hm du'<jc2 s6 du'dng C va 11d~ I oCt R( CPf;,x) I ~ E~ dung
Vx E K, VE E (0, 11)(trong do oCtRia dqo ham dip I a I cua R theo bien x).
.EJjnh nghia 1.11:
T~p h<jp A1Rll] g6m cac ham R(cp, x) cua $'0[Rll] thoa vdi mQi t~p
compact K c Rll va da chi s6 a d~u t6n tqi s6 tt! nhien N va day Y E r sao cho
vdi m6i cPE Jig (q ~ N) d~u Hm du'<jc2 s6 du'dng C va 11 d~:
C Er(g)
E
i) $'M[Rll] la mQt vanh vdi phep cQng va nhan anh Xq
ii) QJf/[Rll] la idean cua $'M[Rll]
(xin trlnh bay b~ng chung minh dinh ly nay d phgn phl;!chu'dng)
T~p h<jp cac ham suy rQng Colombeau la vanh thu'dng $'M[Rll]/./11Rll].
Ky hi~u la y[Rll].
Tudinh nghla 1.13 ta co cac di~u sail day:
+ M6i ham suy rQng Colombe au la mQtlOptu'dng du'dng co dqng:
G =R(cp, x) + /11Rll], R(cp, x) E $'M[Rll]la mQt dqi di~n cua G.
+ Phep cQng va phep nhan hai ham suy rQng Colombaeu du'<jcth\fc hi~n nhu' sail:
Trang 7G1 + G2 =Rl(cp, x) + R2(cp, x) + J1;[Rll]
G1.G2 =Rl(CP, x).R2(cp, x) + J1;[Rll]
Trong d6 R1(cp,x) la d(;lidi~n cua G1, R2(cp,x) la d(;lidi~n cua G2
1.14.-Gia tri cua ham suy rQng Colombeau G t(;li Xo E Rll la so phuc suy rQng
R(cp, xo) +:J E C.
Trong d6 R( cp,x) la mQt d(;lidi~n cua G trong ~M[Rll]
D~ dinh nghla 1.14 hejp l~ c~n phai chung minh hai di~u sail day:
i) R( cp,xo) E ~M
ii) Dinh nghla 1.14 khong phl;!thuQc vao d(;lidi~n
Th~t v~y:
i) La'y t~p compact K c Rll chua Xo,da chI so a, I a I = O.
Do R( cp, x) E ~M[Rll] t5n t(;li so tlf nhien N d~ vdi m6i cp E udN, d~u tIm
du'ejc 2 so du'ong C va 11sao cho:
IDa R(CPE'x) I ~ ~, Vx E K, VE E (0,11)
E
=> R( cp, xo) E ~M
ii) Gia sa R1, R21a hai d(;lidi~n cua G
=> (Rl - R2)E J1;[Rll]
=> Vdi t~p compact K chua Xoda so chI so a, I a I = O T5n t(;liso tlf
nhien N va day so Y E r sao cho vdi m6i cp E Yiq (q ~ N) d~u tIm du'ejc 2 so
du'ong C va 11d~:
Trang 8E
C.E y(q)
E
rQng trong C
v D~O HAM CUA HAM SUY RQNG COLOMBEAU
.fJjnh nghla 1.15:
Da(G) =DaR( cP,x) + JI1Rll], trong do G E y[Rll] co d~i di~n la R( cP,x), DaR( cP,x) la d~o ham dtp a cua R( cP,x) theo bien x, con a la da ChI s6 tuy y.
£)6 dinh nghIa 1.15 hQp l~ ta c§n chung minh hai di€u sail:
i) DaR(cp, x) E $'M [Rll]
ii) Da(G) khong phl;l thuQc vao d~i di~n.
Th~t v~y:
i) Voi t~p compact tuy yK va da ChIs6 ~=> ~+ a cling la da ChI s6
Do R(cp, x) E $'M[Rll] lien co s6 tl! nhien N sao cho voi m6i cp E ~JiiNd€u
tlm du'Qc 2 s6 du'c5ng C va 11d6
I
a+13
I
C
D R(CPE'x) ~ N' \:Ix E K, \:IE E (0,11).
E
I
I
C
E
=> Da R( cP, X) E $'M[Rll]
Trang 9ii) Giii su R}, R2 la hai d(;lidi~n cua G => R =Rl - R2 E ut[Rll] Voi t?P
compact K chua Xo,da chi sf)~(a va ~ la da chi sf)lien a + ~ clingla
da chi sf))
Do R E A1Rll] lien voi mQi t?P compact K c Rll va da chi sf) ~ + a co sf) tl! nhien N va day sf)YE r sao cho voi m6i
cpE '~q (q ~ N) d~u tim duQc 2 sf) dudng C va 11d~:
C Ey(q)
I Da+P R( q\;, x) I ~ . N ' '\Ix E K, '\IE E (0, 11).
E
C.E y(q)
= I D~(D<XRl - D<XR2(cpc;,x)) I ~ ~
E
=> (D<XRl - D<XR2)(CP,x) E ut[Rll].
Tli dinh nghla 1.15 va chung minh tren ta co m~nh d~ sail:
Mfnh di 1.16:
i) M6i ham Colombeau d~u co d(;loham mQi ca'p
ii) D(;loham cua Colombeau cling la ham Colombeau
.Mfnh di 1.17:
Cong thuc Leibnitz v~n con dung voi d(;loham cua ham Colombeau
D<X(GIG2) = ICt.Da-fJGJ.DfJG2.
O~fJ~a
Th?t V?y: Voi R1(cp,x) la d(;lidi~n cua Gl, R2(cp,x) la d(;lidi~n cua G2
D<X(GIG2) = D<X (RIR2) + ut[Rll]
= ICt.Da-fJ R1.DfJ R2 + ut[Rll]
O~fJ~a
= ICt.Da-fJGJ.DfJG2
O~fJ~a
13
Trang 10VI PHEP NHAN, PHEP CONG SO PHUC SUY RONG (HO~C SO
PHUC) VOl HAM COLOMBEAU.
.M~nh di 1.18:
y[Rn] nho ghep nhung
trong do c E C co d(;lidi<%nk( ep)
Chang minh:
Truoc he't ta co nh~n xet dng: Tli cac dinh nghla 1.6, 1.10 va 1.11 d~ dang co duQccac di~u sail day:
e N€u R(ep) E $'M thl R(ep) E $'M[Rn]
eNe'uR(ep) EJthlR(ep) E J1'[Rn]
e Ne'u R(ep) E h[Rn] va R(ep) kh6ng phl;!thuQc x thl R(ep) EJ
Bay giO ta chung minh m<%nhd~ 1.18 theo cac buoc sail:
+ j la anh X(;l,th~t v~y:
do keep) E $'M => keep) E $'M[Rll] => j(c) E y[Rll]
gia sli' k 1(ep) la d(;li di<%nkhac cua k
=> [k 1(ep)- k( ep)] EJ
=> [kl(ep) - keep)] E J1'[Rll] va keep),k1(ep)E $'M[Rll]
=> keep),k1(ep)la hai d(;lidi<%ncua mOt ph~n tli'trong y[Rll]
=> j kh6ng phl;!thuQc vao d(;lidi<%n
V~y j la anh X(;l
+ j la d6ng diu vanh, th~t v~y:
Trang 11Gia su kl(CP)la d(;lidi~n cua cl E C
k2(cp)la d(;lidi~n cua c2 E C
=>k1(cp)+k2(cp)lad(;lidi~ncuacl +c2 E C
k1(cp).k2(cp)la d(;lidi~n cua cl.c2 E C
Ta co: j(Cl) =k1(cp) + J1;[Rll]
j(Cl).j(C2) =k1(cp).k2(CP)+ /V[Rll]
=(k 1.k2)( cp) + J1;[Rll] =j( Cl.C2)
=> j la d6ng diu vanh.
+ j la ddn anh, th~t v~y:
Gia su j(Cl) =j(C2) => k1(cp) +J1;[Rll] =k2(cp) +J1;[Rll]
=> [k1(cp) - k2(cp)] E J1;[Rll]
ma [k 1(cp) - k2( cp)] khong phl;}thuQc X
=> [k1(cp) - k2(cp)] EJ
=> j la ddn anh
V~y j la ddn ca'u
Tli m~nh d€ tren, ta co h~ qua sail day:
-Hf qua 1.19:
Ne'u: k( cp) la d(;li di~n cua C E C
R( cP,x) la d(;li di~n cua ham Colombeau G E y[Rll]
15
Trang 12Thi: j(c) + G =(k(ep) + R(ep, x)) + J1I[Rn]
j(c).G =(k(ep).R(ep, x)) + J1I[Rn]
Ta co thti nhung t~p s6 phuc C vao t~p heJpcac ham Colombeau y[Rn]
nho rich cua hai phep nhung da nh~c d€n a m~nh d~ 1.9 va m~nh d~ 1.18.
Voi nhung co sa tren ta di d€n dinh nghla phep nhan, phep cQngmQt s6 phuc suy rQng c (ho~c s6 phuc Z E C) yoi ham Colombeau nhu' sail:
.Dinh nghia 1.20:
Gia sa c E C co d~i di~n la k(ep)
G E y[Rn] co d~i di~n la R(ep, x)
Z la s6 phuc thuQc C
Ta gQi: c.G =k(ep).R(ep, x) + ,/11Rn]
c + G =keep) + R(cp, x) + J1I[Rn]
Z.G =z.R(ep, x) +J1I[Rn]
Z + G =z +R(ep, x) + J1I[Rn]
Tli dinh nghla 1.20 ta tha'y vanh y[Rn] la mQt kh6ng gian vec to tren
tru'ong s6 phuc C.