Luận văn thạc sĩ toán học- ngành toán học-Chuyên đề :Một số bất đẳng thức thuộc Loại Ostrowski và các áp dụng
Trang 1Trong chudng nay, chung Wi mu6n ap d\lng cac ba't d~ng thuc tich phan tren cac ham C\lth€.
4.1 Ham g(x) =ex.
khido
g<n)(x)=eX, nEZ+
va
(4.1) IIg<n+l)1100= sup!g<n+l) (o! = eY.
o$t$y
Ap d\lng ba't d~ng thuc (2.16), ta thu duQc
eY -eo -exI (Y_X)k+1 +(-l)k(x-a)k+l
(4.2)
eY
<
- (n+l)![(y-xY+l +(x-ay+l]
eY
S (y-ay+l, 'v'xE[a,y].
(n + I)!
Df;icbi~t, ne'u chQn a = 0 trong (4.2), khi do ta thu duQc
n-I(y - X)k+l + (-l)k Xk+l
eY -1 - exI
k=O (k + I)!
(4.3)
eY
<
- (n+l)![(y-xY+l +xn+l]
Trang 2< e Y \:IxE [O,y].
- (n+I)!'
Han mIa, n6u chon x = Y , khi do ta co
(4.4 )
y n-l
1 ( I)k
k=O (k + I)! 2k+l
< eY yn+l
4.2 Ham g(x) = lux.
Ta xet ham g: (0,+00)~ IR, g(x)= Inx,
khido
n-l
( n -1 )'
xn
va
/I
-/
Ap dvng ba't d~ng thuc (2.16), ta thu du'qc
n-l (y_x)k+l+(-I)k(x-a)k+l (-I)kk!
(4.7)
< n!
- (n+I)!an+l [(y-xy+l +(x-a)n+l]
< (y - a)n+l
-(n+I)an+l' O<a~x~y.
Han nlia, ba't d~ng thuc nay tu'ang du'ang voi
y n-l 1 (x-a)k+l +(-I)k(y-x)k+l
In ,,-~
(4.8)
Trang 3J~t uJ' lull (~ tJum." Trang 34 ~ 4: dilL ~ oiio- ,
~ (Y_Xy+1 +(x-ay+1
(n + 1) an+1
< (y - a y+1
- (n + l)an+" 0 < a ~ x ~ y.
D~c bi~t, ne'u chc.mtrong (4.8)
y =z + 1, x = w + 1, a = 1, 0:::;;w :::;;z,
khi do ta duQc
(4,9) In(z+l)- I ~ Wk+1 +(-I)k(z-w)k+l
~ (Z-wy+l +Wn+l
(n + 1)
<
-(n+l)' zn+!
Cu6i cling, n€u ch9n trong (4,8)
y = ua, x = wa, 1:::;;w ~ u,
ta duQc
(4.10) lnu - I ~ (w-l)k+l + (-l)k(u - W)k+l
~ (U-wy+l +(w-ly+l
(n + 1)
~ (u-ly+l
(n + 1)
4.3 Ham g(x) = xa,a E JR.
X6t ham g: (0,00) ~ JR, g(x) = xa, a E JR.
Khi do
Trang 4(4.11) g(k) (x) = a(a -1) (a - k + l)xa-k = k!C;Xa-k, 0 < a ::;x ::;y ::;b,
Ck=a(a-l) (a-k+l) , a E, lR k = O12 , , ,
vdi
(4.12) Ilg(n+l)IL= suplg(n+l) (t)1 = (n + 1)!C;+1 max {aa-n-l ,ba-n-l}.
tE[a,b]
Ap dl;lng ba't dAng thuc (2.16), ta thu duQc
n-l
( ) k+l ( l)k( )k+l
ya -aa - I y-x + - x-a (k+l)!C;+lXa-k-l
k=O (k + I)!
(4.13)
::; C;+l max {aa-n-l , ba-n-l H(y - x)n+l + (x - a)n+l]
::; C;+l max {aa-n-l ,ba-n-l}(y - ay+l, '\Ix E [a, y].
Truong hQp rieng, nSu chQn trong (4.13) x = Y;a , ta duQc
(4.14)
n-l 1+ ( l)k
a-k-l ya-aa-I - (y-a)k+lCk+l y+a
( a)n+l
::;C;+l max {aa-n-l ,ba-n-l} Y ~n ' 0 < a ::;y ::;b.
Cl;lth€ I~i (4.14) vdi n chAn,Ie nhusau.
(a) NSu n =2r.
Ta co vdi 0 < a ::;y ::;b,
(4.15)
r-l 1
a-2k-l
ya -aa -" - .
C2k+l ( - )2k+l y+a
~
- a max {aa-2r-l,ba-2r-l} - a
(b) Ne'u n = 2r + 1.
Ta co vdi 0 < a ::;y ::;b,
Trang 5(4.16) a a Ir 1
y -a - -C2k+l ( - ) 2k+1 y+a
2 2k a y a
2r+2
- a max {aa-2r-2 ,ba-2r-2} - a
4.4 Ham g(x) = sinx.
Ta xet ham g: JR -> JR, g(x) =sinx,
khid6
g(k)(X) = sin(x + k ;), \:Jk E Z+
va
(4.17) Ilg(n+I)IL = suplg(n+J)(t)1 ~ 1.
a~t~y
Ap dl;lng b~t dAng thuc (2.16), ta thu duQc
nI ( )k+l + ( l)k ( )k+1
< 1
- (n+l)![(y-x)n+1 +(x-ay+I]
< (y-ay+l
(n + I)! ' Y - a.
Truong hQp rieng, n€u chQn a = 0 trong (4.18), ta duQc
n-I
( - X)k+1 + (-I )k Xk+1
(
n J
(4.19)
< 1
- (n+l)![(y-xY+l +xn+l]
(n+l)!' y~O.
Hon mIa, n€u chon x = y , ta duoc
Trang 6(y
1C
)
siny-" yk+lsin
~ yn+1 (n+1)!2n'YZO.
4.5 Ham g(x) = cosx.
g(k) (x) = cos(x+k"2)' Vk E Z+
va
(4.21) Ilg(n+l) t = sup/g(n+l) (t)/~ 1
a$l$y
Ap dl;lng b§t dAng thuc (2.16), ta thu duQc
(4.22)
n1
( )k+l + ( l)k
( )k+l
k=O (k + I)! 2
~ 1 [(y_x)n+l +(x-aY+']
(n + I)!
~ (y-ay+l
(n + I)! ' Y z a.
Trudng hQp rieng, ne'u chQn a = 0 trong (4.22), ta duQc
(4.23)
n-l
k=O (k+ I)! 2
< 1
~ yn+1
(n+1)!' yzO.
Trang 7.J~ M ML {~ lJuk Trang 38 @Jutdn.g4: dip- ~ oao-
Hdn mIa, ne'u chon x = Y , ta dudc
n-l 1+ ( -I )k
(Y
n
)
cosy -1- '" yk+l cas -+ (k +
(4.24)
~ yn+l
(n + 1)!2n ' y 2 O.