Luận văn thạc sĩ toán học- ngành toán học-Chuyên đề :Một số bất đẳng thức thuộc Loại Ostrowski và các áp dụng
Trang 1J~t ro 1u1LilJrl{J tJum Trang 23 @luitJ'nf,J3: @Lietip cltpuJ
CHUaNG III
CAC AP DT)NG VAO TICH PHAN SO
Trong chuang nay, chung Wi muO'ntrlnh bay cae ap dlJng vao tich phan sO'va cho mQt sO'cae danh gia sai sO'thong qua cae ph~n du trong cong thuc
khai tri6n giO'ng nhu cong thuc Taylor.
X6t phan ho~ch
I : a m =Xo<XI < <X m-I <X m = b
cua do~n [a,b],
va cae di6m trung gian
<; = «;o""'<;m-i)'
trong do
!;j E[Xj,Xj+I]' j=O,l, ,m-l.
(3.1)
Ta dinh nghla t6ng sau day
( J: ) k+1 + ( l) k ( J: ) k+1
Fm,k(J,Im,<;)=II Xj+I-':>j - , ':>j-Xj f(k)«;),
ma t6ng (3.1) co th6 xem nhu stj nhi~u cua tich phan Riemann
(3.2)
m-I
r(f,lm'!;) = If(!;)hj,
j=O
trong do
hj = Xj+1-Xi' j = O,I, ,m-l.
Khi do ta co dinh ly
Trang 2JH4l ur ML ilhUJ t1uli.>- Trang 24 ~ 3: @Lietip dipuJ
Djnh Iy 3.1.
Cho f: [a,b] ~ IR co df;wham f(n-I) la lien t~c tuy~t dol tren [a,b]
va 1m la mf)t phtm hO(lch cua do(ln [a, b] nhu tren Khi do, ta co
(3.3)
b
ff(t)dt = Fm,k(f,Im,~) + Rm,k(f,Im,~), a
trong do Fm,k(f,Im'~) du(Jc dinh nghla nhu tren va phdn du Rm,k(f,Im'!~)
tho a mf)t ddnh giG
)I ~ Ilf(n)lloo ~[( J: _x. ) n+1 +( x _J:. ) n+l ]
m,k , m' '='
n + J=O
~ Ilf(n)t Ih/+I,
(n + I)! j=O wJi miJi ~, hj =Xj+l - Xj nhu tren.
Chung minh.
Ap dvng dinh 15'2.1 tren do;;tn [Xj,Xj+I]' ta thu du'(jc
(3.5)
Xi+!
ff(t)dt - ~L.J (Xj+1 - ~)k+1 + (-I)k ({ - x )k+1 J J f ile)
~ Ilf(n)IL [({ -x.y+1 +(x _J: ) n+l]
~ Ilf(n)t h~+I,j = 0,1, , m -1.
La'Yt6ng theo j tu 0 d6n m -1 va dung ba't d~ng thuc tam ghic, ta thu du'(jc
danh gia sail
(3.6)
b
IRm,k(f,Im ,~)I =Iff(t)dt - Fm,k(f,Im ,~)
a
Trang 3J~l ur lufL lthUJlJuU Trang 26 ~ 3: @li£ tip dq.ng
(3.9)
I R (f 1 )1 ~ /lfcn)!Ioo~ h~+l
m,k , m 2n(n+I)!~ }
Chung minh.
Ap d\lng h~ qua 2.2 tren do~n [Xj,Xj+l]' ta thu dU<;1c
(3.10)
X 1+1 n-l 1+ (-I )k hk+l
f. f(t)dt - I ~ fCk) Xj +Xj+l
~ /lfcn)/loo hn+l.
2n(n+I)! }
Lay t6ng theo j tu 0 de'n m - 1 va dung bat dftng thuc tam giac, ta dU<;1c
(3.11 )
b
IRm,k(f,1 m)/ = Iff(t)dt - Mm,k (f,1m)
a
= II
[ Xf
.
+f(t)dt - I 1+ (-Il h;+l fCk)
(
Xj +Xj+l
)]
~ I Xlf
.
+1f(t)dt- I I+(-I)k ht1 fCk)
(
Xj +Xj+l
J
~ IlfCn)!Ioo m-l
2n(n+I)!~ h;+l.
Nhu V?y, h~ qua 3.2 dU<;1cchung minh
Bay gio, chung ta xet mOtd~ng nhi6u theo c6ng thuc hlnh thang
b
Do h~ qua 2.3, ta co xap Xltfch phan ff(t)dt theo Tm,JfJm).
a
Trang 4J~ uf ht1L iliLrUJ tJum Trang 27 @luIdI1.fJ 3: @a£ lip ~
H~ qua 3.3
Cha f va 1mnhzt trang djnh ley3.1 Khi d6 ta c6
(3.13 )
b '"" '""
ff(t)dt = Tm,k(f,I m) + Rm,k(f,I m)'
a
trang d6 phdn dzt j(,k (f, 1m) thoa bitt acingthac
(3.14 )
IR (f I )
1
~ Cn
Il fcn)II ~ h~+1
trang d6
(3.15)
{
I,
Cn = 22r+1-1
22r+1 '
n = 2r + 1.
Chung minh
Ap d\lng h~ qua 2.3 tren do~n [Xi,Xj+I]'ta thu duqc
(3.16) XJf(t)dt - I h;+1 fCk) (x) + (-l)k fCk) (Xj+l)
C
< n
Ilf c )11
m-I
- (n+1)! n ooLh;+I, J=O
voi h va C nhu tren. .I n
Lay t6ng rhea j tIT0 de'n m -1 va dung bat d~ng thuc tam giac, ta thu duqc
danh gia
(3.17)
b
/Rm'k(f,Im)1 = Iff(t)dt - Tm'k(f,Im)
a
= II
[
Xl
f+f(t)dt - ~ h;+1 fCk) (x) + (-l)k fCk) (x
)]
J+I
Trang 5J~ uf haLilkuJ tJum Trang 28 @Jurdng; 3: @Lietip cltpLg
~ I xlf+f(t)dt- ~ h;+' l(k)(x)+(-I)k l(k)(X,
)
}+I
c
< n
II/
( )
11
m-I
- (n + I)! n '" Ij=O h~+l}
Nhu V?y, h~ qua 3.3 du<jc chung minh
Cae tru'ong hQ'p rieng
(i) Truong hQp rieng cua h~ qua 3.2
ChQntrong (3.7) vdi
'+ X
} '+I - O m - 1
;:: =} , } - , ,
'-;,j 2
va
(3.19)
~
1m : a =Xo <XI < <Xm-I <Xm= b,
m
Ta du<jc c6ng thuc sau
1 ) J
H~ qua 3.4 (Truong h<jprieng h~ qua 3.2)
Cho I: [a,b]~ 1R co d(lOham I(n-I) la lien tl;lctuy?t dol tren [a,b]
~
va 1mnhu(3.19) Khi do ta co
(3.21)
b
fl(t)dt = Mm,k(/,1m) + Rm,k(/,1m) a
va phc1n du Rm,k (I, 1m) thoa ddnh gid
(3.22) - < mllf"'ILh'" = 1!f"'IL ,h",
Rm,k(l,Im)l- 2n(n+l)! 2 (n+l).
Trang 6J~l ro IJdLltdntJ lJuLe Trang 29 ~J 3: @Lietip dtpuJ
(H) Truong hQ'p rieng cua h~ qua 3.3.
Voi 1m nhutrong (3.19) Khi do ta co tIT(3.12) ding
H~ qua 3.5 ( Truong hQprieng h~ qua 3.3)
~
va 1m nhu(3.19) Khi do ta co
(3.24)
ff(t)dt = Tm,k(f,lm) + Rm,k(f,lm) a
va phdn du i(,k (f, 1m) thoa ddnh gid
(3.25)
/R (f I )
1
~ mCn
Il f(nJ II hn+1= (b - a)Cn
m,k , m (n + I)! 00 (n + I)! 00'
trong do
(3.26)
{
I,
Cn = 22r+1-1,
22r+1
n=2r ,
n = 2r + 1.
(Hi)Truong hQ'prieng cua h~ qua 3.5
(a) n=2r.
va ph~n du
b
Rm,k(f,1m) = ff(t)dt-Tm,k(f,1m)
a
thoa danh gia
Trang 7JJlijl.t£ haL (tklf,] tJui'e Trang 30 ~ 3: @ae lift dq.ng
(3.28) !iCU}.)! ~ (b-a)IIf""IL "(2r+I)! h.
(b) n=2r+l.
(3.29) Tm,k(f,Im) =I I hk+! f(k\a+ }h)+(-I)kf(k)(a+(}+l)h)
va ph~n du
b
i(,k(f,Im) = ff(t)dt-Tm,Jf,Im)
a
tho a danh gia
(3.30) IR , U,I.)I,; (2"" -1)111"""11
(2r + 2)! 22r+100(b - a)h2r+!.
Chu y 3.1.
if Neu chQn n = 1 trong cong thuc (3.4), ta thu duQc
(3.31)
ff(t)dt- I (Xj+1-x)f(c;)
m-l Xi+!
S I ff(t)dt - (Xj+1- Xj )f(C;j) j=O XI
:£ Ilf~1I. ~[(qJ -X)' + (Xj" -q)']
-(C; - Xj +Xj+l )
2
= Ilf/IL~ 4 + (Xj+l_X)2 I(Xj+l_X)2
Il f/IL ~ (x -X.)2.
< L j+1 J
- 2 j=O
Trang 8J~ ufluiL itJ-I'uJtJum Trang 31 ~ 3: @Lietip dtpu]
iif N€u chQn n = 1 trong (3.10), ta thu du(jc
(3.32)
(
X +X
J
ff(t)dt-Iexj+i-Xj)f j+i j
<IlflQIeXj+l _X)2.
- 4 j:O
Cac k€t qua (3.31), (3.32) cho ta tim l,!i du(jc k€t qua trong [4] (S.S Dragomir va S Wang).
Chuy3.2.
if Trong (3.4), chQn n = 2 ta du(jc
(3.33) IfJ(t)dt - ~[(Xi" - x)J(!;) - (Xi'!- X)(!;; - Xi ~Xi" Jp(!;)]
2
X +i +X.
~ - ) }
S ~} 0 24 + 2 eXj+i - Xj )2 leXj+l -x)31Ifllt
< IlflilLIeXj+i _X)3.
iif N€u chQn n= 2 trong (3.10), ta thu du(jc
(3.34)
(
X +X
)
<Ilfllt IeXj+i _X)3.
Cac k€t qua (3.33), (3.34) cho ta tim l,!i du(jc cac ke't qua dft co trong [2].