1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi GVDG cấp trường- Môn Toán

4 230 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 415,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b Những điểm khác nhau giữa phương pháp dạy học dựa trên giải quyết vấn đề với phương pháp dạy học nêu vấn đề truyền thống.. Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông.

Trang 1

TRƯỜNG THCS NOONG LUỐNG

(Đề gồm 01 trang)

KỲ THI GIÁO VIÊN DẠY GIỎI CẤP TRƯỜNG

NĂM HỌC 2013 – 2014 Môn thi: Toán

Thời gian làm bài 150 phút ( không kể thời gian giao đề)

Câu 1: (3,0 điểm)

a) Nêu khái niệm phương pháp dạy học dựa trên giải quyết vấn đề Lấy một ví

dụ minh họa

b) Những điểm khác nhau giữa phương pháp dạy học dựa trên giải quyết vấn

đề với phương pháp dạy học nêu vấn đề truyền thống

Câu 2: (6,0 điểm)

a) Tính: S = 1 1 1

1  3  3  5   119  121 b) Chứng minh rằng: với n chẵn thì giá trị của biểu thức A = 3 2

24 8 12

  là một

số nguyên

Câu 3: (4,0 điểm)

Cho bài toán sau:

“Cho tứ giác ABCD Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC,

CD, DA Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông.”

a) Anh (chị) hãy giải bài toán trên

b) Định hướng học sinh cách giải

Câu 4: (3.0 điểm)

Tìm giá trị nhỏ nhất của biểu thức: 2 2 2

A (x y)    (x 1)   (y x) 

Câu 5: (4.0 điểm)

Cho tam giác ABC vuông tại A, đường cao AH Lấy điểm E thuộc đoạn AB, điểm F thuộc đoạn AC sao cho

a) Chứng minh:

b) Biết HE là đường phân giác của góc AHB chứng minh AE = AF

= = = HẾT = = =

Đề thi chính thức

Trang 2

TRƯỜNG THCS NOONG LUỐNG KỲ THI GIÁO VIÊN DẠY GIỎI CẤP TRƯỜNG

NĂM HỌC 2013 – 2014

HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC

Môn: TOÁN

(Hướng dẫn chấm gồm 03 trang)

Câu

1

a,- Dạy học dựa trên giải quyết vấn đề là dạy học dựa trên các vấn đề thực tiễn

có liên quan đến người học và liên quan đến nội dung học tập đã được quy định

trong “chuẩn kiến thức, kỹ năng” Trên cơ sở đó, người học tự chiếm lĩnh tri

thức và phát triển các năng lực như lập kế hoạch, tự định hướng học tập, hợp

tác, các kỹ năng tư duy bậc cao, kỹ năng sống

- Lấy một ví dụ từ thực tiễn để dạy học

1,5

b- Sự khác nhau

Dạy học nêu vấn đề Dạy học dựa trên giải quyết vấn đề

Vấn đề được xây dựng theo nội

dung tài liệu học trong chương

trình:

- Vấn đề nằm trong bài học

- Vận dụng kiến thức trong bài

học để giải quyết

- Vấn đề có thể nêu trước,

trong hoặc sau khi tìm hiểu bài học

Vấn đề trong thực tiễn có liên quan đến người học nhưng đảm bảo theo chuấn kiến thức , kỹ năng:

- Vấn đề nằm trong thực tiễn đời sống có liên quan đến bài học

- Vận dụng kiến thức trong bài học

và vốn sống thực tế để giải quyết

- Vấn đề được nêu ra từ đầu tiết học/ đầu hoạt động

1,5

Câu

2

6,0 điểm

a

1  3  3  5   119  121

( 3 1)( 1 3) ( 5 3)( 3 5) ( 121 119)( 119 121)

2

121 1 2

11 1

5 2

S

S

S

Trang 3

C2b Vì n chắn => n 2k (k Z )

3 2

(2 ) (2 ) 2

24 8 12 24 8 12

3 2 6

2 3

6 ( 1)(2 1)

6 ( 1)( 2 1)

6 ( 1)( 2) ( 1)( 1)

6

A

  

 

   

k k(  1)(k 2) k k(  1)(k 1) 6  ( Tử là tổng của hai tích 3 số nguyên liên tiếp )

=> A là số nguyên

3,0

Câu

3

4,0 điểm

a Giải bài toán

- c/m Tứ giác MNPQ là hình bình hành

- Hình bình hành MNPQ là hình thoi  MN = MQ  AC =BD  Tứ giác

ABCD có hai đường chéo bằng nhau

- Hbh MNPQ là hình chữ nhật  góc NMQ = 900  MNMQ

 AC BD  tứ giác ABCD có hai đường chéo vuông góc với nhau

- Hbh MNPQ là hình vuông khi nó vừa là hình thoi vừa là hình chữ nhật

 Tứ giác ABCD có hai đường chéo bằng nhau và vuông góc với nhau 2,0

Trang 4

P

C

N D

Q

A B

3b Định hướng

? Tứ giác MNPQ là hình gì?

? theo dấu hiệu nhận biết, Hình bình hành là hình chữ nhật khi nó có thêm

điều kiện gì? => hình bình hành có một góc vuông hoặc có hai đường chéo

bằng nhau

? Trong trường hợp này, ta nên chọn dấu hiệu nào?

 hình bình hành có một góc vuông ( vì có liên quan đến đường chéo của

hình bình hành MNPQ)

2,0 Câu

4

A (x y)    (x 1)   (y x) 

3

2 3

1 3 2 1 2

2 2

2

x

Đẳng thức xẩy ra khi và chỉ khi 1; 0

3

x y Vậy GTNN của A= 32 , đạt được khi 1; 0

3

x y

3,0

Câu

điểm

a Chứng minh được tứ giác AEHF nội tiếp

mà (cùng phụ với góc ACB)

2,0

b Nếu HE là đường phân giác của góc AHB thì , suy ra

Xét đường tròn ngoại tiếp tứ giác AEHF có , suy ra AE

=AF

2,0

(Thí sinh làm theo cách khác đúng vẫn cho điểm tối đa)

Ngày đăng: 13/02/2015, 00:00

HÌNH ẢNH LIÊN QUAN

Hình bình hành MNPQ) - Đề thi GVDG cấp trường- Môn Toán
Hình b ình hành MNPQ) (Trang 4)

TỪ KHÓA LIÊN QUAN

w