Ph©n tÝch thµnh nh©n tö
3
3
− +
−
+
27 15
,
c
6
b,
10 5
,
a
Trang 2Ph©n tÝch thµnh nh©n tö
) 2
5 (
5
5
2 5
5
2.5 )
5 (
10
5
Trang 327 15
,
c
) 2
( 3 3
2 3.
6
b,
)
2 5
( 5 10
5
,
a
2 5
3 3
Trang 4ViÕt c¸c biÓu thøc sau d íi d¹ng b×nh
ph ¬ng cña mét tæng hoÆc hiÖu
35 12
g,
14
9
-,f
15 8
e,
5
6
,
d
2 2
2
2
− + +
Trang 5; 1)
5 (
1 1
5 2
) 5 (
1 5
5 5
6
,
d
2
2 2
+
=
+ +
=
+ +
=
Trang 62
2 2
) 3 5
(
) 3 (
3
5 2
) 5 (
3 5.3
5 15
8
,
d
2 2
+
=
+ +
=
+ +
= +
Trang 72 2
2 2
2
2 2
7 2
7
2 2
7 2
) 5 7
( 35
12
g,
)
2 7
(
) (
)
(
14 14
9
Trang 833 2
14
g,
21 2
- 10
,f
42 2
13
i, 18
2 9
h
− + +
Trang 933 2
14 g,
21 2
- 10
,
f
) 7 6
(
) 7 (
7
6
2 )
6 (
7 6.7
2 6
42 2
13
chän 13
7 6
lo¹i 23
21 2
i
¹ lo 17 14
3
6.7 2.21
3.14 42
cã
ta 42 2
13
i,
) 3 6
(
18 2
= +
+
= +
= +
= +
= +
=
=
=
= +
+
= +
Trang 10Bµi 2
6 3
x
-6 x
,
c
2 10
2 -
7
b,
3 2
4
,
a
thøc biÓu
gän
Rót
+ +
+ +
Trang 112 2
2 2
2 2
2
2 2
2
1 1
1
2
2 2
+
−
= +
−
=
+ +
=
+ +
= +
+
= +
=
+
= +
5 )
5 (
) (
5.
2 - )
5 (
5.2 2
5 10
-2 - 7
b,
3
3
)
3 (
3
2 4
,
a
2
Trang 123 3
x
-3 3
x )
-3 3
x (
-3 3
3 -
x 2.
) 3 -
x (
9 3
3 -
x 2.
3 -
x
6 3
x 6
-x
,
c
2
22
+
=
+
= +
=
+ +
=
+ +
=
+ +
Trang 13Bµi 3 Ph©n tÝch ra thõa sè
xy -
x
b,
a a
a
,
a
Trang 14) y x
( x
y
x )
x (
xy -
x
b,
) a -
a(1 a
a -
a
Trang 15Bµi 3 Ph©n tÝch ra thõa sè
y x
y
x
d,
x
y y
x
,
c
−
−
Trang 16) y
x ).(
y x
(
) y x
( )
y x
).(
y x
(
) y x
( )
y (
) x (
y x
y - x
d,
) y x
( y x
x )
y (
y )
x (
x y
y x
−
− +
=
+
− +
a 0;
a
Trang 17Bµi 3 Ph©n tÝch ra thõa sè
3
a -
1
,
g
a a
2 -
1 f,
0)
a (víi
a -
1
a 0;
a
Trang 18) a a
)(
a (
) a (
1
-a -
) a (
a
a
a 2
1
-f,
0)
a (víi
)
a )(1
a -
(1
) a (
1
-a -
2
+ +
1
1 2
1
3 2
2 2
Trang 19Bµi 4
2 3
6 7
r»ng
h min
Chøng
1 a
1 -
a
r»ng
minh
chøng
1 a
Cho
1 a
1 a
r»ng
minh
chøng
0 a
Trang 200 a
ra khi y
víi 0
a 1
a
) a
( )
1 a
(
a a
a n
nª
0 a
mäi víi
a cã
ta
a a
) a
(
a )
1 a
( cã Ta
=
=
≥
≥ +
≤ +
=>
+
≤ +
+
≥ +
+
≥
≥
+ +
= +
+
= +
1 1
1 1
2
0
1 2
1
1
2 2
2
2
Trang 211 a
do
0 a
1 - a
) a
( )
1 - a (
) a
( a
a a
a )
a (
) 1 - a
(
a a
) a
(
a )
1 - a (
2 2
2
1 2
1 1
1 2
1
1
2 2
2 2
2
2
Trang 22lµ minh
chøng i
ph¶
diÒu VËy
ra bµi
theo óng
1 a
1
a a
) a (
a a
a a
a
a a
a
) a
( )
1 - a (
(1) n
nª
0 a
vµ 1
a cã
-Ta (1)
a 1
1 2
2 2
1 2
1
1
1 0
1
22
Trang 231 a
do
) a
( a
a a
a )
a (
) 1 - a
(
a a
) a
(
a )
1 - a (
2 2
2
1 2
1 1
1 2
1
1
2 2
2
2
Trang 24Ph©n tÝch ra thõa sè
3 x
2 - x
,
e
8 x
6 x
,
d 6
x 5
x
-c,
9 xy
2 - y x
b,
y
x 1
xy
,
a
−
+ +
+
− +
+ +
+
Trang 25) 1 x
)(
1 y
(
) 1 y
( )
1 y
( x
) y 1
( )
x xy
(
y
x 1
xy
,
a
+ +
=
+ +
+
=
+ +
+
=
+ +
+
Trang 26) 3 y
x )(
3 y
x (
3 )
y x
(
9 )
y (
y
x 2
) x (
9 xy
2 -
y x
b,
2 2
2 2
−
− +
−
=
− +
Trang 278 x
6 x
)(
2 x
( )
2 x
( 3 )
2 x
( x
) 6 x
3 ( x
2 )
x (
6 x
3 - x 2
x 6
-x 5
x
-c,
9 xy
2 - y x
b,
y
x 1
xy
,
a
2
+ +
− +
+ +
+
Trang 28) 2 x
)(
4 x
( )
4 x
( 2 )
4 x
( x
8) x
2 ( ]
x 4
) x [(
8 x
2 x
4 x
8 x
6 x
)(
3 x
( )
3 x
( )
3 x
( x
) 3 x
( x
3 )
x (
3 - x x
3 - x 3
x 2
x
-e,
2 2
+ +
= +
+ +
=
+ +
+
=
+ +
+
= +
−
=
− +
Trang 2912 x
4 2 − +
Trang 303 x
víi x
4
víi 6
x 4 x
2 3
3 x
2 )
x 2 3
( )
3 x
2 ( A
ã
§
Do
x 2 3
) 3 x
2 ( 3
x 2 thi
2
3 x
0 3
x 2
NÕu
6 3
x 2 3
x 2 )
3 x
2 ( )
3 x
2 ( A
ã
§
Do
3 x
2 3
x 2 thi
2
3 x
0 3
x 2
NÕu
3 x
2 )
3 x
2 ( )
3 x
2 ( )
3 x
2
(
9 x
12 x
4 )
3 x
2
(
A
2 2
<
=
≥
= +
− +
=
−
− +
− +
=
−
− +
=
−
− +
=
+
−
− +
=
Trang 312 )
5 , 0 (
4 A
cã
ta
2
3 0,5
x Víi
6 A
cã
ta
2
3 17,75
x Víi
Trang 323 x
víi -6;
x víi
B cña
trÞ gi¸
TÝnh
b.
B thøc
biÓu gän
Rót
,
a
1 x
4 x
4 2
x 5
=
=
+ +
− +
=
Trang 33víi 1
x 3
3 x
7 1
x 2 2
x 5 )
1 x
2 ( )
2 x
5 ( B
ã
§
Do
1 x
2 )
1 x
2 ( 1
x 2 thi
2
1 x
0 1
x 2
NÕu
1 x
3 1
x 2 2
x 5 )
1 x
2 ( 2
x 5 B
ã
§
Do
1 x
2 1
x 2 thi
2
1 x
0 1
x 2
NÕu
1 x
2 2
x 5 )
1 x
2 ( )
2 x
5
(
1 x
4 x
4 )
2 x
5
(
B
2 2
−
=
−
≥ +
+
= +
+ +
=
−
−
− +
=
−
−
= +
−
= +
= +
− +
=
+
= +
−
≥
⇔
≥ +
+
− +
= +
− +
=
+ +
− +
=
Trang 342 1
2 1
2
1 3
7
2
1 1
cã
ta n
nª 3
x Víi
*
-39 3
7.(-6) B
cã
ta n
nª -6
x Víi
*
x víi
x
B VËy
x víi
x
Trang 35
x 1
x − + −
2 2
3 x
víi
; 5 2
6
=
−
Trang 361 1
1 1
1
1 1
1
1 0
1
1 2
1 1
1 1
0 1
0 1
1 1
2 1
= +
VËy
x víi
x x
) x (
x A
ã
§
Do
x )
x (
x thi
x x
NÕu
x x
x )
x (
x A
ã
§
Do
x x
thi
x x
NÕu
x x
) x (
x
x x
x A
Trang 373 2
2 1
) 1 2
.(
2 1
1 2
.
2
1 )
1 2
( 2.
A VËy
1 )
1 2
(
x
thay
ta
1 1
2 1
2 2
-4 2
cã
Ta
) 1 2
( x
cã
Ta
2 2
3 x
Víi
1 A
VËy
1 )
1 5
(
x
thay
ta
1 1
2 1
5 2
4 5
cã
Ta
) 1 5
( x
cã
Ta
5 2
6 x
Víi
*
2 2
2 2
Trang 38Bµi 7
khi C
cña trÞ
gi¸
tÝnh
vµ gän
Rót
x x
x C
thøc
biÓu
6 2
5 x
víi
; 21 2
Trang 392 2
4 2
2 2
0 2
2 2
2
2 2
4 0
2
2 2
0 2
2 2
4 4
2 2
2 2
−
=
) x (
x
thi x
) x (
x x
x
NÕu
x )
x (
x C
thi x
) x (
x x
x
NÕu
x x
) x (
x C
x x
x C
thøc
biÓu Cho
Trang 402 3
2 2
2 3
2 2
4 3
2
2 3
2 7
2 2
3 7
2
4 3
7 2
2 2
2
2 2
C cã
ta
) (
6 2
5 x
Víi
) (
C cã
ta
) (
21 2
10 x
Víi
4 x
víi
C
4 x
0 víi x
Trang 41
Bµi 8 Chøng minh r»ng biÓu
thøc M lµ sè nguyªn
2 4
6 2
2 3
Trang 42) (
) (
M
∈
=
− +
+
=
− +
+
=
− +
+
=
+
− +
+ +
=
− +
+
=
3 2
2 1
2
2 2
1 2
2 2
1 2
2 2
2 2
4 1
2 2
2
2 4
6 2
2 3
2 2
Trang 43Bµi 9 Thùc hiÖn c¸c phÐp tÝnh
3 :
) 12 4
108 27
) 7 5
5 (7
d,
5 12
29 3
5
,
c
) 3 5
2 (
).
5 3
2 (
,
b
) 5 4
2 3
( ).
2 3
5 (4
,
a
− +
+ +
+
−
Trang 4462 18
80 2
3 5
4
2 3
2 3
2 3
2 3
2 3
2 2
2 2
) (
) 5 (4
) 5
(4 ).
5 (4
) 5 4
( ).
5 (4
,
a
Trang 4510 2
4
3 5
10 2
2 3
5
3 5
3 5
3 5
5 3
2 2
+
=
− +
+
=
− +
=
− +
+ +
=
− +
+ +
) (
) 2
(
] )
2 [(
].
) 2
(
[
) 2
( ).
2 (
,
b
Trang 461 1
1 5
1 5
1 5
2 5
3 5
2 3
3 5
2 3
3 5
2 3 2 5
2 3
9 5
2 3 2 20
3
5 12
29 3
2
2
2 2
5 )
( 5
5 )
( 5
) (
5
)
( 5
5
5
,
c
Trang 473 :
) 12 4
108 27
) 7 5
5 (7
d,
5 12
29 3
5
,
c
) 3 5
2 (
).
5 3
2 (
,
b
) 5 4
2 3
( ).
2 3
5 (4
,
a
− +
+ +
+
−
Trang 487 8
6 9
3 12
4 108
7 35
7 5
=
− +
=
− +
+
=
+
: ) 27
) 5
(7
d,
Trang 49Bµi 10 TÝnh gi¸ trÞ c¸c biÓu thøc sau
n m
víi n)
(m
-1 n).
(m
,
c
2 1
x
víi 1
x
víi
9 p
12 4p
1 p
6 9p
2 4
>
+
= +
=
+
−
− +
−
Trang 505 P
cã
ta 3
p
víi
2p 3p
) (2p
) (3p
p 4p
p 9p
P
3 p
víi
p
4p p
9p
,
a
2 2
2 2
4 4
4 4
−
3 1
3 1
9 12
1 6
9 12
1 6
2 2
2 2
2 2
Trang 51= +
2
) (
2 2
2 2
1 -
2 1
1 2
1 1
x
-1 x
2 1
x
víi 1
x
-1
x
,
b
Trang 521 1
(
).
n m
(
n m
).
n m
( n)
(m
-1 n).
(m
-n m
víi n)
(m
-1 n).
(m
-,
c
2
2
Trang 53Bµi 11 Gi¶i ph ¬ng tr×nh
) x
( )
x
( 11
1
b,
x) -
81(2
,
1 4
23 15
1 1
3 17
0 3
Trang 541 2
3
5 3
1 2
3
1 2
3
1 2
3 2
9
3
0 3
*
x x
*
x x
x
x) -
81(2
x) -
81(2
,
a
22
Trang 552 1
2 1
255 253
1 44
1 45
1 44
253 1
45 255
1 4
23 15
1 1
3 17
x x
x x
) x
( )
: TX§
b,
Trang 562y
d,
; y y
2
,
c
Trang 57-1 y
lµ
pt cña
nghiÖm VËy
y y
y y
) y (
) y - 2 (
y y
-2
2 y
-4 -4
y
vµ 2
y
y
vµ 0
y - 2 : KX§
§
; y y
2
≥
+
=
1 2
2 4
2
4 4
0 4
4
2 2
Trang 58nghiÖm
pt v«
VËy
(lo¹i) 2
y y
y
) y
( )
1 - 2y (
y 1
2y
-2 y
2 y
vµ 2
1 y
y
vµ 0
1 - 2y :
KX§
§
; y
1 - 2y
1 2
2 2
0 2
2
2 2
Trang 59Bµi 11 Gi¶i ph ¬ng tr×nh
1 3
3
1 1
−
= +
= +
−
=
−
x x
x
g,
2 -
z z
2z -
4
f,
z
z
,
e
2
2 2
Trang 601 z
nghiÖm cã
pt VËy
(1) m·n
tho¶
1 z
2 2z
z 2z
1 1
-z
(2)
) z (
z
(1)
1 z
0 z
1
z z
,
e
2 2
2 2
1 1
Trang 612 z
(2)
0 2z
(1)
2 z
(2)
z z
z 2z
4
-(1)
2 z
) z
( )
z 2z
4 (
0 2
z
-2 -
z z
2z -
4
f,
2
2 2
≥
−
= +
≥
= +
4 4
2
2
2 2
Trang 62) i
¹ lo (
1 x
hoÆc x
0 1
8x hoÆc
-x
) x
)(
x (
x 8x
(2)
i Gi¶
(2)
x x
x x
(1)
3
1 x
) x
( )
x x
(
0 1
3x
-x x
x
g,
2 2
2 2
−
+
−
= +
≥
−
= +
≥
−
= +
3
1 8
1
0 1
0 1
8 1
0 1
9
1 6
9 3
1 3
3
1 3
3
2
2 2