Lập phơng trình chính tắc của đờng vuông góc chung của ∆2 và ∆1.
Trang 1Đề thi đại học Năm 2009
Thời gian: 180 phút
Câu 1 (2 điểm): Cho hàm số 2 ( 1) 3
1
y
x
− + +
=
1 Khảo sát và vẽ đồ thị hàm số khi m=2
2 Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đờng thẳng 1 1
2
Câu 2 (2,5 điểm): 1 Giải phơng trình: 1 2sin2 3 2 sin sin 2 1
2sin cos 1
2 Tìm a để phơng trình sau có nghiệm:
(1 ( 2) ) log (2 ) (1 (3 1) ) log (1 ) log (2 ) log (1 )
điểm): 1 Tìm x âm thoả mãn: n
4 4 2
143 4
n n
A x
+ +
= − với *
n N∈ , 4
4
n
A+ là số các chỉnh hợp, 2
n
P+ và P là số các hoán vị n
2 Tính tích phân sau:
2
1
ln ( 1)
∫
Câu 4 (2,5 điểm):
Cho hai đờng thẳng ( )∆1 : 2 3
x− = =y z− ;
2 ( )∆ : 2 1
x = y− = z+
−
1 Lập phơng trình chính tắc của đờng vuông góc chung của ( )∆2 và ( )∆1
2 Cho mặt phẳng ( )α : x y z+ + + =3 0 Viết phơng trình hình chiếu của ( )∆2 theo phơng 1
( )∆ lên mặt phẳng ( )α
Câu 5 (1,5 điểm): 1 Chứng minh rằng: xα ≥αx− +α 1; ∀ > ∀ >α 1; x 0
2 Tam giác ABC thoả mãn: 2 2 2 2 2 2 1 2
Nhận dạng tam giác ABC?