1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án 4 cột cho các bạn mới ra trường

17 390 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 411,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kỹ năng: + Biết lấy ví dụ về mệnh đề, mệnh đề phủ định của một mệng đề, xác định được tính đúng sai của một mệnh đề trong những trường hợp đơn giản.. - Mệnh đề là những khẳng định có tí

Trang 1

May 29, 2010

Chương I

MỆNH ĐỀ TẬP HỢP.

§1 MỆNH ĐỀ.

-

-I MỤC TIÊU:

Kiến thức: + HS biết thế nào là một mệnh đề, mệnh đề phủ định, mệnh đề chứa biến.

+ Biết ký hiệu phổ biến ( )∀ và ký hiệu tồn tại ( )∃ .

+ Biết được mệnh đề kéo theo và mệnh đề tương đương

+ Phân biệt được điều kiện cần và điều kiện đủ, giả thiết và luận

Kỹ năng: + Biết lấy ví dụ về mệnh đề, mệnh đề phủ định của một mệng đề, xác định được tính

đúng sai của một mệnh đề trong những trường hợp đơn giản

+ Nêu được mệnh đề kéo theo và mệnh đề tương đương

+ Biết lập được mệnh đề đảo của một mệnh đề cho trước

Thái độ: + Phát triển tư duy trừu tượng, tư duy khái quát hóa, tư duy lôgic,…

+ Học sinh có thái độ nghiêm túc, say mê trong học tập, biết quan sát và phán đoán chính xác

II CHUẨN BỊ:

GV: SGK, giáo án, phấn, thước, một vài ví dụ về mệnh đề.

HS: SGK, đọc và soạn bài trước khi đến lớp, bảng nhóm.

III TIẾN TRÌNH DẠY HỌC:

Ổn định lớp: (1ph)

1 Kiểm tra bài cũ:

2 Nội dung bài mới:

Tgian Nội dung Hoạt động của Giáo Viên Họat động của Học Sinh

4ph I MỆNH ĐỀ - MỆNH

ĐỀ CHỨA BIẾN.

1 Mệnh đề.

- Mệnh đề là những khẳng

định có tính đúng hoặc

GV: Nhìn vào hai bức tranh

(SGK trang 4), hãy đọc và

so sánh các câu bên trái và các câu bên phải

- Xét tính đúng, sai ở bức

HS: Quan sát tranh và suy

nghĩ trả lời câu hỏi…

Tiết : 1, 2

Ngày soạn: ……/……/ 2008

Ngày dạy : ……/……/ 2008

Trang 2

sai

- Mỗi mệnh đề phải hoặc

đúng hoặc sai

- Một mệnh đề không thể

vừa đúng, vừa sai

2 Mệnh đề chứa biến.

- Mệnh đề chứa biến là

một câu chứa biến, với

mỗi giá trị của biến thuộc

tập hợp nào đó ta có một

mệnh đề

Ví dụ: xét “x > 3”

+ Với x = 1 ta có mệnh

đề “1 > 3” (sai)

+ Với x = 5 ta có mệnh

đề “5 > 3” (đúng)

tranh bên trái

- Bức tranh bên phải các câu

có cho ta tính đúng sai không?

GV: Các câu bên trái là

những khẳng định có tính đúng sai:

•Phan-xi-păng là ngọn núi cao nhất Việt Nam

là Đúng

• 2

9,86

π < là Sai

- Các câu như vậy gọi là những mệnh đề Vậy mệnh

đề là gì?

- Khẳng định lại khái niệm mệnh đề

- Yêu cầu học sinh trả lời TH2

- Dựa vào ví dụ (SGK), cho từng giá trị cụ thể của n để

có các khẳng định đúng hoặc sai, ta gọi đó là các mệnh đề chứa biến Vậy thế nào là mệnh đề chứa biến?

- Khẳng định lại khái niệm mệnh đề chứa biến

- Yêu cầu học sinh trả lời

3 (SGK)

- Bức tranh bên phải các câu không cho ta tính đúng sai

- Chú ý nghe

- Mệnh đề là những khẳng định có tính đúng hoặc sai

- Nêu ví dụ về mệnh đề…

- Quan sát và chú ý lắng nghe

- Mệnh đề chứa biến là một câu chứa biến, với mỗi giá trị của biến thuộc tập hợp nào đó ta có một mệnh đề

- Trả lời câu hỏi

10ph II PHỦ ĐỊNH CỦA

MỘT MỆNH ĐỀ.

- Dựa vào ví dụ SGK để giảng và đưa ra khái niệm mệnh đề phủ định

- GV: Theo em ai đúng, ai

sai?

- GV: Nếu ta ký hiệu P là

mệnh đề Minh nói

- Mệnh đề Hùng nói “không phải P” ta gọi là mệnh đề phủ định của P

- Giới thiệu kí hiệu P

- Minh đúng

- Chú ý lắng nghe

Trang 3

Kí hiệu mệnh đề phủ định

của mệnh đề P là P, ta

có:

P đúng khi P sai

P sai khi P đúng

- Để phủ định một mệnh đề

ta làm ntn?

- Vậy nếu P đúng thì P như thế nào?

- Giới thiệu tiếp cho học sinh ví dụ 2

- Yêu cầu học sinh trả lời

4 (cho học sinh hoạt động nhóm)

- Gọi học sinh nhận xét

- GV khẳng đinh lại kết quả

- Để phủ định một mệnh

đề, ta thêm (hoặc bớt) từ

“không” (hoặc từ “không phải”) vảotước vị ngữ của

mệnh đề đó.

- Nếu P đúng thì P sai và ngược

- Quan sát và chú ý lắng nghe

- P: “π là số vô tỉ”

- Q: “Tổng hai cạnh của một tam giác không lớn hơn cạnh thứ ba”

15ph

III MỆNH ĐỀ KÉO

THEO.

Ví dụ 3: “Nếu trái đất

không có nước thì không

có sự sống.”

*Mệnh đề “Nếu P thì Q”

được gọi là mệnh đề kéo

theo, ký hiệu: PQ

*Mệnh đề PQ chỉ sai

khi P đúng và Q sai.

*Nếu P đúng và Q đúng

thì PQ đúng.

*Nếu Pđúng và Q sai thì

PQ sai.

Vd 4 : -3 < -4 ⇒ (-3)2 <

(-4)2 là sai

3< 2 ⇒ 3 < 4 là đúng

- Cho HS xem SGK để rút

ra khái niệm mệnh đề kéo theo

- Gọi một học sinh đọc ví dụ

3 SGK

- Khái quát lên ta có hai mệnh đề P và Q thì khi nào

ta có P kéo theo Q?

- Gọi học sinh nhận xét?

- Khẳng định để đưa ra khái niệm và kí hiệu

- Mệnh đề “ Nếu P thì Q”

được gọi là mệnh đề kéo theo

- Mệnh đề kéo theo ký hiệu:

PQ.

- Mệnh đề PQcòn được

phát biểu là: “P kéo theo Q”

hoặc “Từ P suy ra Q”

- Mệnh đề kéo theo cũng có mệnh đề đúng và sai Hãy lấy ví dụ về mệnh đề kéo theo đúng và sai?

- Gọi học sinh nhận xét

- Cho học sinh hoạt động nhóm thực hiện 5

- Đọc ví dụ

- Khi Nếu P thì Q

- Nhận xét câu phát biểu

- chú ý lắng nghe và ghi bài

- Tam giác ABC cân tại A thì AB = AC

- Nếu a là một số nguyên thì a chia hết cho 3

- Nhận xét ví dụ

(hoạt động nhóm và giơ

Trang 4

Các Định lý toán học

thường có dạng: “Nếu P

thì Q”

P: Giả thiết, Q; Kết luận

của định lý, Hoặc P là

điều kiện đủ để có Q, Q là

điều kiện cần để có P

- Giới thiệu về tính đúng sai của mệnh đề kéo theo Các

em lưu ý mệnh đề PQ

chỉ sai khi P đúng và Q sai

- Vậy khi P đúng ta dựa vào đâu để xét tính đúng sai của

PQ?

- Gọi học sinh nhận xét

- Nêu ví dụ 4 (giảng cho học sinh nắm vững tính đúng sai của mệnh đề trong ví dụ này

- Xem lại các định lý tóan học mà các em đã học ta thấy chúng lá những mệnh

đề có dạng như thề nào?

- Gọi học sinh nhận xét

- Khẳng định lại nội dung và cho học sinh ghi bài

- Yêu cầu học sinh hoạt động nhóm thực hiện 6

- Nhận xét và cho điểm nhóm

bảng)

- Ta xét tính đúng sai của

Q, nếu Q đúng thì PQ

đúng, nếu Q sai thì PQ

sai

- Chú ý lắng nghe và ghi bài

- có dạng mệnh đề kếo theo

PQ với P là gt cn Q là

kết luận của định lý

- Nhận xét

- Hoạt động nhóm và giơ bảng

- Yêu cầu học sinh giải các bài tập 1, 2, 3

Bài1:

a) là mệnh đề

b) Là mệnh đề chứa biến

c) Là mệnh đề chứa biến

d) Là mệnh đề

Bài 2 : a) MĐ đúng, phủ định là:

"1794 không chia hết cho 3”

b) MĐ sai, phủ định là: “

2là số vô tỉ"

Bài 3 : a) Nếu a + b chia hết cho c thì a chia hết cho c và b chia hết cho c

Các số chia hết cho 5 đều

có tận cùng bằng 0

Trang 5

Tam giác có hai đường trung tuyến bằng nhau là tam giác cân

Hai tam giác bằng nhau

có diện tích bằng nhau thì bằng nhau

Tiết 2:

10ph

IV MỆNH ĐỀ ĐẢO,

HAI MỆNH DỀ

TƯƠNG ĐƯƠNG.

- Mệnh đề Q ⇒ P gọi là

mệnh đề đảo của mệnh đề

P ⇒ Q

- Nếu cả hai mệnh đề P

⇒ Q và Q ⇒ P đều đúng

ta nói P và Q là hai mệnh

đề tương đương

+Và ta kí hiệu là P ⇔

Q và đọc là P tương

đương Q hay P là điều

kiện cần và đủ để có Q,

hoặc P khi và chỉ khi Q

- Cho học sinh hoạt động nhóm thực hiện 7

- Xác định P, Q?

- Phảt biểu Q ⇒ P?

- Yêu cầu học sinh làm tương tự cho câu b)

- Gọi học sinh nhận xét, GV nhận xét và cho điểm

- Mệnh đề Q ⇒ P gọi là mệnh đề đảo của mệnh đề P

⇒ Q

- Qua bt vừa thực hiện các

em thấy nếu P ⇒ Q đúng thì

Q ⇒ P ntn?

- Liên hệ lại hai bt vừa làm

để minh họa cho học sinh xem và hiểu

- Nếu cả hai mệnh đề P ⇒ Q

và Q ⇒ P đều đúng ta nói P

và Q là hai mệnh đề tương đương Và ta kí hiệu là P ⇔

Q và đọc là P tương đương

Q hay P là điều kiện cần và

đủ để có Q, hoặc P khi và chỉ khi Q

- Ở đây ta chỉ xét trường hợp P ⇒ Q khi P đúng và Q

⇒ P khi Q đúng nghĩa là P

sẽ tương đương Q khi và chỉ khi P và Q cùng đúng

- Nêu và giảng cho học sinh hiểu ví dụ 5

- (mỗi nhóm trả lời một câu)

a) P: ABC là một tam giác đều

Q : Tam giác ABC cân

- Nêu câu phát biểu

- Chưa chắc đúng

- Chú ý lắng nghe

Trang 6

15ph V KÍ HIỆU VÀ .

Ví dụ 6: Câu “Bình

phương của một số thực

là một số lớn hơn hoặc

bằng 0” Ta có thể viết lại:

∀x ∈ R: x2≥ 0 hay x2≥ 0,

∀x ∈ R

Kí hiệu ∀ đọc là “với

mọi”

Ví dụ 7:

∃x ∈ Z: x2 = x

Kí hiệu ∃ đọc là “có

một” (tồn tại một) hay “có

ít nhất một” (tồn tại ít

nhất một)

Ví dụ 8:

(P): ∀x ∈ R: x2≠ 1

(P): ∃x ∈ R: x2 = 1

- Yêu cầu học sinh xem ví

dụ 6 và cách viết gọn bằng

kí hiệu, giới thiệu ∀ đọc là

“với mọi” nhấn mạnh cho học sinh “với mọi” có nghĩa

là tất cả

- Ngược lại, nếu ta có một mệnh đề viết dưới dạng ký hiệu∀thì ta cũng có thể phát biểu thành lời

- Yêu cầu học sinh làm 8?

- Hãy xét tính đúng, sai của mệnh dề này?

- Gọi học sinh nhận xét, GV đánh giá

- Yêu cầu học sinh đọc ví dụ

7 và xem phần viết gọn bằng

kí hiệu

- Giới thiệu kí hiệu ∃ đọc là

“có một” (tồn tại một) hay

“có ít nhất một” (tồn tại ít nhất một)

- Do đó nếu có một mệnh đề viết dạng kí hiệu ta cũng có thể phát biểu lại thành lời

Yêu cầu học sinh thực hiện

9

- Hãy tìm ra số đó?

- Vậy mệnh đề đúng hay sai?

- Gọi học sinh đọc ví dụ 8

mệnh đề Minh nói ntn với mệnh đề Nam nói?

- Hãy viết mệnh đề Nam nói

và Minh nói dươi dạng kí hiệu?

- Vậy phủ định của mệnh đề

∀x ∈ R: x2≠ 1 là mệnh đề

∃x ∈ R: x2 = 1

- Yêu cầu học sinh thực hiện

10

- Chú ý lắng nghe

- Với mọi số nguyên n ta

có n + 1 > n

- Ta có n + 1- n = 1 > 0 nên

n + 1 > n do đó đây là một mệnh đề đúng

- Đọc ví dụ

- nhóm trả lời, nhóm khác nhận xét

- Có x2 = x ⇔ x(x – 1) = 0

⇔ x = 0 hay x = 1

- Vậy mệnh đề đúng

- Mệnh đề minh nói là phủ định của mệnh đề Nam nói

Nam (P): ∀x ∈ R: x2≠ 1 Minh (P): ∃x ∈ R: x2 = 1

- Tồn tại động vật không di chuyển được

Trang 7

Ví dụ 9:

(P): ∃n ∈ N: 2n = 1

(P): ∀n ∈ N: 2n ≠1

- Gọi học sinh nhận xét, GV đánh giá

- Nêu ví dụ 9 và giảng cho học sinh rõ về mệnh đề phủ định viết bằng kí hiệu ∀, ∃

- Yêu cầu học sinh thực hiện

11

- Gọi học sinh nhận xét, GV đánh giá

- Học sinh nhận xét

- Chú ý lắng nghe

- P: “Mọi học sinh của lớp đều thích học môn Toán”

- Nhận xét

3 Củng cố:

Tgian Nội dung Hoạt động của Giáo Viên Họat động của Học Sinh

19ph

- Yêu cầu học sinh giải btập

5 trang 10 (SGK) gọi 3 học sinh lên bảng ghi kq

- Gọi học sinh nhận xét, GV đánh giá

- Yêu cầu học sinh giải btập

7 trang 10 SGK Gọi 2 học sinh làm 2 câu a), b)

- Gọi học sinh nhận xét, GV đánh giá

a) ∀x ∈ R: x.1 = x

b) ∃x ∈ R: x + x = 0 c) ∀x ∈ R: x + (-x) = 0 Nhận xét

a) ∃n ∈ N: n không chia hết cho n (đó là số 0) b) ∀x ∈ Q: x2≠ 2 Nhận xét

4 Dặn dò: (1ph)

+ Về học kỹ lý thuyết, xem lại các ví dụ

+ Làm lại các bài tập, giải các bài tập còn lại

BÀI TẬP TRẮC NGHIỆM

Câu 1 Mỗi câu sau, câu nào là mệnh đề:

(a)Nếu n là một số tự nhiên thì n lớn hơn không

(b) Thời tiết hôm nay đẹp quá!

(c)Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền có độ dài bằng một nửa

độ dài cạnh huyền

(d)Hôn nay học môn gì vậy?

Câu 2 Xét phương trình bậc hai: ax2+bx +c = 0 (1)

Xác định tính đúng – sai của mỗi mệnh đề sau:

(a)Nếu ac <0 thì phương trình (1) có hai nghiệm phân biệt

(b)Nếu phương trình (1) có hai nghiệm phân biệt thì ac <0;

(c)Nếu a + b + c = 0 thì phương trình (1) có một nghiệm là 1, nghiệm còn lại bằng a

c ; (d) Nếu phương trình (1) có nghiệm là 1 thì a + b + c =0;

Trang 8

(e) Nếu phương trình (1) có hai nghiệm x1 và x2 thì x1 + x2 = b

a

− , x1x2 = c

a Câu 3 Cho mệnh đề P: “Tổng các góc trong của một tứ giác bằng 3600” Hãy chọn mệnh đề phủ định P của mệnh đề P trong các mệnh đề sau:

(a)Tổng các góc trong của một tứ giác lớn hơn hoặc bằng 3600;

(b) Tổng các góc trong của một tứ giác nhỏ hơn hoặc bằng 3600;

(c)Tổng các góc trong của tứ giác khác 3600;

(d) Tổng các góc trong của tứ giác lớn hơn 3600

Câu 4 Xét tính đúng – sai của các mệnh đề sau:

2 2

( ) , 2 4 ; ( ) , 0 2 4 ; ( ) , 2 0 2 ; ( ) , 2 1 3

¡

¡

¡

¡ Câu 5.Cho mệnh đề P: 2

: 1 0

Mệnh đề phủ định của mệnh đề P là:

2 2 2 2

( ) : 1 0;

( ) : 1 0;

( ) : 1 0;

( ) : 1 0

c x x x

¡

¡

¡

¡ Hãy chon kết quả đúng

Câu 6.Cho mệnh đề P: “ 2

∃ ∈Z + + là số nguyên tố”

Mệnh đề phủ định của P là:

2 2

2 2

( )" : 1 µ sè nguyªn tè";

(b)" x : 1 µ hîp sè";

(c)" : 1 «ng µ sè nguyªn tè";

(d)" x : 1 «ng µ hîp sè"

x x l

x x kh l

Z

Z

Z

Z

Hãy chọn kết quả đúng

IV RÚT KINH NGHIỆM TIẾT DẠY:

Trang 9

LUYỆN TẬP.

-

-I MỤC TIÊU:

Kiến thức: + Nắm được kiến thức cơ bản của: Mệnh đề, mệnh đề phủ định, mệnh đề chứa biến,

mệnh đề kéo theo và mệnh đề tương đương

Kỹ năng: + Biết áp dụng kiến thức cơ bản đã học vào giải toán, xét được tính đúng sai của

mệnh đề, suy ra được mệnh đề đảo, mệnh đề phủ định của một mệnh đề, phát biểu được mệnh

đề dưới dạng điều kiện cần, điều kiện đủ, điều kiện cần và đủ, sử dụng các ký hiệu ∀ ∃, để viết các mệnh đề và ngựoc lại

Thái độ: + Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đoán chính xác

II CHUẨN BỊ:

GV: SGK, bảng phụ ghi đề một số bài tập mệnh đề.

HS: SGK, ôn lại các kiến thức về dấu hiệu chia hết, giải pt, bpt, các kiến thức hình học cấp 2.

III TIẾN TRÌNH DẠY HỌC:

Ổn định lớp: (1ph)

1 Kiểm tra bài cũ:

Tgian Nội dung Hoạt động của Giáo Viên Họat động của Học Sinh

niệm mệnh đề? Câu nào sau đây là mệnh đề, mệnh đề chứa biến?

a) 4 là số nguyên tố b) x + y là số chẵn c) 3 - 7 là số hữu tỉ d) x2 – 3x + 2 = 0 2/ Cho hai mệnh đề: P: “n là một số chẵn"

Q: "n chia hết cho 2"

Hãy lập mệnh đề P ⇒ Q, Q

⇒ P xét tính đúng sai của

a) Mệnh đề b) Mệnh đề chứa biến c) Mệnh đề

d) Mệnh đề chứa biến

P ⇒ Q: “Nếu n là một

số chẵn thì n chia hết cho 2”

Ngày soạn: ……/……/

200…

Ngày dạy : ……/……/

200…

Trang 10

mệnh đề P ⇔ Q.

- Gọi học sinh nhận xét và

bổ sung, GV đánh giá

Q ⇒ P: “Nếu n chia hết cho 2 thì n là một số chẵn ”

P ⇔ Q là mệnh đề đúng

2 Nội dung bài mới:

Tgian Nội dung Hoạt động của Giáo Viên Họat động của Học Sinh

10ph

- Muốn phủ định một mệnh

đề ta làm ntn?

- Phủ định của số nguyên tố

có phải là hợp số không?

- Hãy lập mệnh đề phủ định các mệnh đề ở bt phần kiểm tra bài cũ?

- Gọi học sinh nhận xét, GV đánh giá

- Như các em đã học ở lớp 7 trong tập số thực R phủ định của số hữu tỉ là số nào?

- Hãy phát biểu mệnh đề phủ định ở câu c) một cách khác?

- Trước vị ngữ của mỗi mệnh đề ta đổi có thành không, không thành có, = thành ≠, …

- Không, phủ định của “số nguyên tố” là “không phải

là số nguyên tố”

a) “4 không là số nguyên tố”

b) x + y là số lẻ c) 3 - 7 không là số hữu tỉ

d) x2 – 3x + 2 ≠ 0

- Nhận xét

- Trong tập số thực R phủ định của số hữu tỉ là số vô tỉ

c) 3 - 7 là số vô tỉ

Cho các mệnh đề sau:

a) Nếu a & b cùng chia

hết cho c thì a + b chia hết

cho c (a, b, c ∈ N)

- Phát biểu mệnh đề P⇒ Q bằng cách sử dụng khái niệm “điều kiện cần” và

“điều kiện đủ” Mệnh đề đúng khi nào? Sai khi nào?

- Cho một đề bt Yêu cầu học sinh hoạt động nhóm giải

- P là điều kiện đủ để có Q

Q là điều kiện cần để có P

P⇒ Q đúng khi P và Q đều đúng, sai khi P đúng và Q sai

1/ Phát biểu mệnh đề đảo: a) a + b chia hết cho c thì a & b cùng chia hết cho

Trang 11

b) Các số nguyên có số

tận cùng bằng 5 đều chia

hết cho 5

c) Hai tam giác bằng

nhau có diện tích bằng

nhau

- Yêu cầu:

1/ Hãy phát biểu mệnh

đề đảo của mỗi mệnh đề

trên và xét tính đúng sai

của nó?

2/ Phát biểu lại các

mệnh đề trên bằng cách

sử dụng điều kiện cần và

điều kiện đủ

Quan sát và hướng dẫn học sinh hoạt động

- Gọi các nhóm nhận xét chéo, GV khẳng định và đánh giá

c (đúng) b) Các số nguyên chia hết cho 5 thì có số tận cùng bằng 5 (sai)

c) Hai tam giác có diện tích bằng nhau thì bằng nhau (sai)

2/ a) Nếu a & b cùng chia hết cho c là ĐKĐ để (a + b)M c

(a + b)M c là ĐKC để a & b cùng chia hết cho c

b) Các số nguyên có số tận cùng bằng 5 là ĐKĐ để

số nguên đó M 5

Số nguên M 5 là ĐKC để số

đó có số tận cùng bằng 5 c) Hai tam giác bằng nhau là ĐKĐ để 2 ∆ đó có diện tích bằng nhau

2 ∆ có diện tích bằng nhau

là ĐKC để 2 ∆ đó bằng nhau

Các nhóm nhận xét chéo

5ph

- Hướng dẫn và cho học sinh chữa bài tập 4 (SGK trang 9)

- Gọi học sinh nhận xét, GV đánh giá

- Yêu cầu học sinh làm tương tự cho các câu còn lại

a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9

5ph

Bài tập 6: (SGK)

a) Mọi số thực đều có

bình phương là một số

dương (đúng)

d) Có số thực x sao cho

1

x

x

<

- Cho học sinh giải câu a), d) bài tập 6 (SGK trang 10)

- Mệnh đề đúng khi x là số nào?

- Gọi học sinh nhận xét, GV nhận xét và đánh giá

a) Mọi số thực đều có bình phương là một số dương (đúng)

d) Có số thực x sao cho 1

x x

<

- Khi x = 1

2

Ngày đăng: 10/07/2014, 17:00

TỪ KHÓA LIÊN QUAN

w