1. Trang chủ
  2. » Giáo án - Bài giảng

ôn thi tn 2010

12 268 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 273,88 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiến thức: Hàm số, đồ thị hàm số và các bài tập liên quan khảo sát và vẽ đồ thị.. Kĩ năng: Thành thạo việc khảo sát và vẽ đồ thị, viết được phương trình tiếp tuyến, biện luận theo tham

Trang 1

Ngày soạn: 02/03/2010 ÔN THI TỐT NGHIỆP NĂM 2009-2010

CHUYÊN ĐỀ 1.( 12 Tiết)

I MỤC TIÊU

1 Kiến thức: Hàm số, đồ thị hàm số và các bài tập liên quan khảo sát và vẽ đồ thị

2 Kĩ năng: Thành thạo việc khảo sát và vẽ đồ thị, viết được phương trình tiếp tuyến, biện

luận theo tham số số nghiệm của phương trình

3 Thái độ: Chủ động và cận thận, sáng tạo khi làm bài biến đổi được để đưa về bài toán

quen thuộc

II.NỘI DUNG BÀI

1 Tổ chức: Lớp: Sĩ số:

2 Ngày dạy:

3 Bài tập 1

I Đề bài

Câu 1 (3,0 điểm) Cho hàm số

y

+

=

- (C)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho

2 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ y=-3

Câu 2 Cho hàm số :

2 1 1

x y x

+

=

- (C)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)

2 CMR với mọi giá trị tham số m , đường thẳng y = x + m luôn cắt đồ thị (C) tại 2 điểm phân biệt.

Câu 3 (3,0 điểm) Cho hàm số y =− +x3 3x2 (C)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Viết phương trình tiếp tuyến với đồ thị hàm số tại các giao điểm với trục hoành

3 Dựa vào đồ thị (C), xác định m để phương trình sau có đúng ba nghiệm phân biệt: x3-3x2+m=0

Câu 4 (3.0 điểm) Cho hàm số y=2x3−3x2+1 (C).

1 Khảo sát sự biến thiên và vẽ đồ thị (C)

2 Tìm giá trị lớn nhất, nhỏ nhất của hàm số / [3,5]

3 Dựa vào đồ thị (C) biện luận theo m số nghiệm phương trình 2x3−3x2+ =m 0.

Câu 5 ( 3.0 điểm) Cho hàm số y = -x3+ 3x2 (C)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Dựa vào đồ thị (C) Biện luận theo m số nghiệm của phương trình : x3- 3x2+ m +1=0

Câu 6 (3.0 điểm) Cho hàm số y= − +x4 2x2 (C).

1 Khảo sát sự biến thiên và vẽ đồ thị (C)

2 Dựa vào đồ thị (C) biện luận theo m số nghiệm của phương trình x4−2x2+2m− =3 0.

Câu 7 (3 điểm) Cho hàm số y = - x4 + 2x2 +3 có đồ thị (C)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Tìm giá trị lớn nhất, nhỏ nhất của hàm số / (0,5,3)

3 Dựa vào đồ thị (C), tìm các giá trị của m để p.trình x4 – 2x2 + m = 0 có bốn nghiệm thực phân biệt

Câu 8 (3 điểm) Cho hàm sốy x= 4 −2x2 +1 (C).

1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số

2 Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng -2

Câu 9 (3điểm) Cho hàm số y=-2x3+6x-1 (C)

Trang 2

1 Khảo sát sự biế thiên và vẽ đồ thị hàm số.

2.Viết phương trình tiếp tuyến với đồ thị hàm số biết tiếp tuyến song song với đường thẳng 2x-y+1=0

Câu 10 Tìm Max và min của hàm số và bài tập liên quan.

1 Tìm GTLN, GTNN của hàm số f x( )= x2−4x+5 trên đoạn [ 2;3]−

2.Tìm m? Để hàm số y = 3 2

3 mx

x

+ 2x + 1 luôn luôn đồng biến

3 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số : y x= −sin 2x trên đoạn 4 4 ;

−π π

 

 

4 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số : y=3x e− 3x trên [-1;1].

5 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f x( )=2x3−3x2−12x + 7 trên đoạn [0;3]

6 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =x3 - 3x+ 3 trên tập xác định

7 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= 2

1 2 +

x

x

trên đoạn [-1,3]

8 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= -x4-2x2+3 trên đoạn [1,2]

9 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x-e2x trên đoạn [-1,0]

10 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= -2x3+3x2+5 trên khoảng (2,3)

11 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4-2x2+3 trên khoảng (-2,0,5)

12 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= 3 2

1 2

x

x

ỷtên đoạn [0,3]

II Hướng dẫn thực hiện.

1 Khảo sát và vẽ đồ thị (Nắm chắc sơ đồ và thực hiện các thao tác )

1 Txđ (Tính chẵn lẻ nếu có)

2 Sự biến thiên

a Chiều biến thiên y’=

y’=0 kết luận nghiệm và dấu của y’

Kết luận tính đơn điệu của hàm số

b Cực trị:

Nếu y’ đổi dấu qua nghiệm thì hàm số đạt cực trị

c Giới hạn:

Tuỳ vào các hàm cụ thể ta có kết luận về nhánh tiến ra vô cực

Chỉ ra tiệm cận đứng, ngang hay xiên với hàm số phân thức

d Bảng biến thiên:

Tổng hợp lại các kết quả thực hiện trong các phần trên

3 Đồ thị

* Tìm giao với các trục bằng cách cho x hoặc ylần lượt bằng 0

* Chỉ ra tâm đối xứng với hàm số bậc 3, phân thức và trục đối xứng với hàm bậc 4

* Vẽ đồ thị dựa vào các dữ kiện đã thực hiện ở trên

2 Bài toán biện luận theo tham số số nghiệm của phương trình

* Biến đổi phương trình đã cho G(m,x) về dạng f(x)=g(m)

* Khi đó số nghiệm của phương trình là số giao điểm của g(m) và đồ thị hàm số

3 Bài toán lập phương trình tiếp tuyến

* Xác định yêu cầu của bài toán đó là tiếp tuyến dạng nào( tại, qua hay biết hệ số góc)

* Tiến hành làm bài theo yêu cầu

+ Phương trình tiếp tuyến tại một điểm M0(x0,y0) có dạng y-y0=y’(x-x0)

( Tìm y’ thay vào công thức được tiếp tuyến)

+ Đường thẳng đi qua M0(x0,y0) với hệ số góc k có phương trình y =k(x-x0)+y0

Trang 3

Để tiếp xúc với đồ thị khi 

=

+

=

k x f

y x x k x f

) ( '

) ( )

có nghiệm

+ Lập tiếp tuyến có hệ số góc k

Tức là y’=k tìm được x0, y0 thay vào phương trình được kết quả

III Cụ thể

+ Câu (1,2,3,4,5,6,7,8,9 phần (1) Học sinh tự thực hiện)

+ Câu 1.2 ta có y=-3 nên x=1 => y’=-5

Vậy phương trình tiếp tuyến tại (1,-3) là y=-5(x-1)-5

hay y=-5x

Câu 2.2 Xét phương trình x+m= 1

1 2

+

x

x

(1) (với x khác 1) <=> (x+m)(x-1)=2x+1

<=> x2+(m-3)x-1=0

Ta có ∆=(m−3)2 +4(m+1)=m2 −2m+13 0∀m

Vậy phương trình 1 luôn có 2 nghiệm hay đường thẳng luôn cắt đồ thị tại hai điểm phân biệt Câu 3.2 Tìm giao điểm với ox thực hiện như 1.2

3.3 Dựanvào cực trị biện luận

Câu 4.2 Tính đạo hàm tìm nghiệm trên đoạn đã cho

Tính các giá trị tại các hoành độ /[a,b] so sánh

Kết luận maxy, miny /[ ]

Câu 5.2

III Củng cố và hướng dẫn bài về nhà.

+ Hoàn thiện các bài đã cho, áp dụng vào các bài còn lại

+ Ôn tập tiếp đến hàm số mũ lôga phương trình và bất phương trình của nó

Ngày soạn: 28/03/2010 ÔN THI TỐT NGHIỆP NĂM 2009-2010

CHUYÊN ĐỀ 2.( 4 Tiết)

I MỤC TIÊU

1 Kiến thức: Hàm số và phương trình mũ và Loga

2 Kĩ năng: Giải được các bài tập cơ bản theo các phương pháp đã học

3 Thái độ: Cẩn thận sáng tạo khi làm bài

II.NỘI DUNG BÀI

1 Tổ chức: Lớp: Sĩ số:

2 Ngày dạy:

3 Bài tập 1

I Đề bài

Câu I Giải các phương trình và bất phương trình sau.

1 Giải phương trình log4 x+log (4 )2 x =5.

2 Giải phương trình: log2 x−log (4 x− =3) 2

3 Giải phương trình : log2 x+log10x− =1 0.

4 Giải phương trình : ln2x−lnx( 1)e+ + =e 0.

5 Giải phương trình:

log (2 −1).log (2 + −2) 12=

6 Giải phương trình:

1 ) 7 ( )

1 ( )

1 (

2

1 2

1 2

1 x− +Log x+ −Logx =

Log

Trang 4

7 Giải phương trình: 25x – 6.5x + 5 = 0

8 Giải phương trình : 4x+2x+1− =8 0

9 Giải phương trình 21+x +26−x =24

10 Giải phương trình: 21 2x+ - 6x =3.9x

11 Giải phương trình : 5x−1+53−x =26

12 Giải phương trình: 51+x −26.51−x +5=0

13 Giải phương trình: 22x+2 −9.2x+2=0

14 Giải bất phương trình : 13

5

2

x

x> −

15 Giải phương trình : log (22 x+ −1) 3log (2 x+1)2+log 32 02 = .

16 Giải bất phương trình: 2x+ 22−x < 5

17 Giải phương trình : ln2x−lnx( 1)e+ + =e 0.

18 Giải phương trình: Log3(3x+1)log3(3x+2+9)=6

19

II Hướng dẫn rthực hiện

III Cụ thể.

Bài giải.

1 Điều kiện x>0

Phương trình <=> Log4x+2Log4x=3

<=> Log4x=1

<=> x=4

2 Diều kiện x>3

Phương trình <=> Log4x2-Log4(x-3)=2

<=> 3 16

2

=

x

x

<=> 

=

=

=

+

12

4 0

3

48 16 2

x

x x

x x

3 x=1 và x=10-1

4 Giải phương trình bậc hai tìm x

5 Đặt Log2(2x-1)=t thì

Phương trình trở thành t(1+t)=12

<=> t2+t-12=0

<=> t t==−34

+ Với t=3 thì 2x=9 <=> x=Log29

+ Với t=-4 thì 2x=17/16 <=> Log217/16

18 Tương tự bài 5

6 Điều kiện 1<x<7

Phươưng trình <=>

1 ) 7 ( 2 ) 1 ( )

1 (

2

1 2

1 2

1 x− +Log x+ − Logx =

Log

<=>

1 49 14

1 2

2

2

+

x x

x Log

Trang 5

<=> 2

1 49 14

1 2

2

= +

x x

x

Kết luận nghiệm

7 Đặt 5x=t với t>0

Ta có phương trình t2-6t+5=0 <=> 

=

= 5

1

t t

+ Với t=1 thì x=0

+ Với t=5 thì x=1

8.9 Đặt 2x =t với t>0 giải phương trình

2t2-24t+64=0 <=> 

=

= 8

4

t t

+ Với t=4 thì x=2

+ Với t=8 thì x=3

( Xét tương tự bài 11,12,13.)

14 Điều kiện x>0 và khác 1

Khi đó bất phương trình <=> 2

5 1 1

3

x Log x

Log

<=>

0 1 5

, 2 3 3

2

x Log

x Log x

Đặt Log3x=t khi đó ta có bất phương trình

0

1 5 , 2 2

t

t

Sử dụng phương pháp khoảng tìm nghiệm

16 ta có phương trình <=> 22x-5 2x+4<0

<=> 1<2x<4

<=> 0<x<2

III Củng cố và hướng dẫn bài về nhà.

+ Hoàn thành các bài đã chữa và các bài cồn lại

+ Ôn lai các kiến thức về tích phân và các phương pháp tính tích phân

Ngày soạn: 08/04/2010 ÔN THI TỐT NGHIỆP NĂM 2009-2010

CHUYÊN ĐỀ 3.( 4 Tiết)

I MỤC TIÊU

1 Kiến thức: Tích phân các điều kiện tồn tại của tích phân các phương pháp tính

2 Kĩ năng: Ứng dụng thành thạo tính các tích phân đơn giản và các phương pháp tính tích phân

3 Thái độ: Cẩn thận khi làm bài và chủ động chuẩn bị kiến thức cần thiết cho bài

II.NỘI DUNG BÀI

1 Tổ chức: Lớp: Sĩ số:

2 Ngày dạy:

3 Bài tập 1

I Đề bài

1 Tính tích phân I=

dx x Cos

x Sin

 + 2

0

2 2

π

Trang 6

2 Tính tích phân I =

4

0

sin 2

1 cos 2

π

+

x dx

x

1 Tính tích phân I = ∫3 +

0

2 1

x x

dx

2 Tính tích phân

1

0 ( + )

= ∫e e x x x dx

I

3 Tính tích phân

2

0

(x sin ).cos x x dx

I

π

+

4 Tính tích phân:

3 2

0

(sin − ).cos

π

5 Tính tích phân: I=∫2 +

1

2 ) 1 (x e x dx

6 Tính tích phân: I=

∫2 + 0

1 2

π

Cosxdx Sinx

7 Tính tích phân: 0

π

=∫ +

8 Tính tích phân : I = ∫

2

0cos 2 .sin 2

π

xdx x

* Biến đổi hàm số dưới dấu tích phân theo cách sau :

1 5 sin 4

1 sin 2

1 sin 4 cos 2

1 sin 2

1 sin ) 4 cos 1 ( 2

1 sin 2

9 Tính tích phân: I= ( )

4 3 4

dx

x x +

III Củng cố và hướng dẫn bài về nhà.

Ngày soạn: 28/03/2010 ƠN THI TỐT NGHIỆP NĂM 2009-2010

CHUYÊN ĐỀ 4.( 4 Tiết)

I MỤC TIÊU

1 Kiến thức: Số phức và các kiến thức về số phức

2 Kĩ năng: Thực hành thành thạo các bài tốn liên quan số phức va phương trình nghiệm phức

3 Thái độánCẩn thận khi thực hiện làm bài, chủ động sáng tạo tiếp cận kiến thức

II.NỘI DUNG BÀI

Trang 7

1 Tổ chức: Lớp: Sĩ số:

2 Ngày dạy:

3 Bài tập

I Đề bài

1 Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z = 1 + i làm một nghiệm

Vì z = 1 + i là một nghiệm của phương trình: z2 + bx + c = 0 ( b, c ∈ R), nên ta cĩ :

Vậy b=-2 và c=2

B i 2 Gi¶i phà ¬ng tr×nh 2iz + 1 - i = 0

Bµi gi¶i NghiƯm cđa ph¬ng tr×nh lµ

i

− − −

= = + = +

3 Giải phương trình x2 − 4 x + = 7 0 trên tập số phức

4 Tìm số phức liên hợp của số phức z=5−2i+(2−i)2.

5 Giải phương trình 2z2 − + =iz 1 0 trên tập số phức.

6 Giải phương trình : 8z2 – 4z + 1 = 0 trên tập số phức

7 Tính và viết kết quả dưới dạng đại số số phức Z=1 3

3 1

i

i

− +

8 Tìm số phức z thỏa mãn :

1

4

=

+

i z

i z

0 1 1

1

2 2

4

=

+

+

+

=

+

i z

i z i

z

i z i

z

i

z

*

0 1

2

=

+

i

z

i

z

0

±

=

+

i z

i z

*

0 0

0

2 2

=

 +

+

 −

+

=

+

= +

i z

i z i i z

i z i

i z

i z i

z

i

z

1

±

=

z

9 a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i

b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn

1 < | z – 1 | < 2

Hướng dẫn

a G/s sè phøc z cã d¹ng : z = x + iy víi x,y ∈R,

| z | = x2+y2

Ta cã : | z | = 1 + ( z – 2 ) i

Trang 8

⇔ x2+y2 = ( 1 – y ) + ( x – 2 ) i

2 2 ( )2

y 2

 − ≥ ⇔

 + = − 



b G/s số phức z có dạng : z = x + iy với x,y ∈R,

Ta có : | z - i | = | x + ( y - 1)i | = 2 ( )2

x + −y 1

Do đó : 1 < | z - i | < 2 ⇔ 1 < | z - i |2 < 4

2 ( )2

⇔ < + − <

Gọi (C1) , (C2) là hai đờng tròn đồng tâm I( 0 ; 1) và có bán kính lần lợt là : R1=1 , R2 = 2 Vậy tập hợp các điểm cần tìm là phần nằm giữa hai đờng tròn (C1) và (C2)

10 Cho z =

i

− +

, Hóy tớnh :

; z;z ;(z) ;1 z z

HD

11 Tỡm phần thực, phần ảo và tớnh mụ đun của số phức

a Cho

( )3

z

-=

+

b. Cho số phức z thỏa món ( ) (2 ) ( )

1 i+ 2 i z 8 i− = + + +1 2i z

Vớ dụ Tìm phân thực, phần ảo của các số phức sau

a i + (2 - 4i) - (3 - 2i); b ( 1 )− +i 3−(2 )i 3

Bài giải

a Ta có: i + (2 - 4i) - (3 - 2i) = ((0 + 2) + (1 - 4)i) + (- 3 + 2i)

= (2 - 3) + (-3 + 2)i = -1 - i

Vậy số phức đã cho có phần thực là - 1, phần ảo là - 1

b Sử dụng các quy tắc cộng, trừ, nhân hai số phức ta có

Do đó nhận đợc kết quả của bài toán là Z= 2 + 10i

Vậy phần thực =2 và phần ảo =10

i i

z

+ + +

=

3 2

1

13 Giải phương trỡnh sau trờn tập hợp cỏc số phức

Z2 – ( 1 + 5i)Z – 6 + 2i = 0

14 Cho số phức

1

z

Trang 9

Bài giải + Do

2

z = − − i

Nên

z + + = − −z i + − + i + =

;

+ Lại có

i

i z

i

− −

− +

Suy ra

1 2

z

= =

+ Hơn nữa ta có Z3=1

15 Tìm số phức z, nếu z2+ =z 0

Bài giải + Đặt z = x + yi, khi đó

2

2

0

0 0

0

0 0

0

0

1

0

x

y xy

x x

y

y y

z + = ⇔ + + + =

 =

− + =

 − + + = 

=

=



=

 =  =

 − =

=





 + =

y





 

 = + >

 =



 = =

 = =



⇔  = = −

= =



Vậy có ba số phức thoả mãn điều kiện là z = 0; z = i; z = - i

Bài 16 Tỡm soỏ phửực lieõn hụùp cuỷa soỏ phửực z =5−2i+(2−i)2.

Bài giải + Vieỏt z = 8 – 4i.

+ z =8+4i

III Củng cố và hướng dẫn bài về nhà.

Ngày soạn: 28/03/2010 ễN THI TỐT NGHIỆP NĂM 2009-2010

CHUYấN ĐỀ 5.( 6 Tiết)

I MỤC TIấU

1 Kiến thức: Phương phỏp toạ độ trong khụng gian

2 Kĩ năng: thành thạo việc giải cỏc bài toỏn về phương trỡnh mặt phẳng đường thảng và cỏc bài liờn quan

3 Thỏi độ: Chủ động cẩn thận khi làm bài

Trang 10

II.NỘI DUNG BÀI.

1 Tổ chức: Lớp: Sĩ số:

2 Ngày dạy:

3 Bài tập

I Đề bài

Hình học.

Bài 2 Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng

( )1

d :

, ( )2

d :

- và điểm A(1; 1;1) 1.Chứng minh rằng ( )d1 và ( )d2 cắt nhau.

2.Viết phương trình mặt phẳng (P) chứa ( )d1

và ( )d2

Tính khoảng cách từ A đến mặt phẳng (P) Bài 3 Trong không gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình:

(S) : x 1− + y 2− + −z 2 =36 và (P) : x 2y 2z 18+ + + =0.

1 Xác định tọa độ tâm I và tính bán kính của mặt cầu (S) Tính khoảng cách từ T đến mp(P)

2 Viết p.trình đường thẳng d đi qua I và vuông góc với (P) Tìm tọa độ giao điểm của d và (P

Bài 4 Cho hai mặt phẳng( )P x: +2y−2z + 5 = 0; Q :( ) x+2y−2z -13 = 0.Viết phương trình của mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc với cả hai m.phẳng (P) và (Q)

Bài 5 Cho tứ diện ABCD có ba đỉnh A(2;1;- 1), B(3; 0;1), C(2;- 1; 3), còn đỉnh D nằm trên trục Oy Tìm tọa độ đỉnh D nếu tứ diện có thể tích V =5

Bài 6 Cho ba điểm O(0 ; 0 ; 0), A(0 ; 0 ; 4), B(2 ; 0 ; 0) và mp(P): 2x + 2y – z + 5 = 0 Lập p.tr m.cầu (S)

đi qua ba điểm O, A, B và có khỏang cách từ tâm I đến mặt phẳng (P) bằng 3

5

Bài 7 Cho đường thẳng (d ) :

x 2 4t

y 3 2t

z 3 t

 = +

 = +

 = − +

 và mặt phẳng (P) : − + +x y 2z 5 0+ =

Viết phương trình đ.thẳng (∆) nằm trong (P), song song với (d) và cách (d) một khoảng là 14

Bài 8. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

( )d :1 x y 1 z 6

và ( )d :2 x 1 y 2 z 3

1.Chứng minh rằng ( )d1

và ( )d2

chéo nhau

2.Viết phương trình mặt phẳng (P) chứa ( )d1

và song song với ( )d2

Bài 9 Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P) có phương trình

2x y 2z 1 0− + − = và điểm A(1; 3; 2)

1 Tìm tọa độ hình chiếu của A trên mặt phẳng (P)

2 Viết phương trình mặt cầu tâm A và đi qua gốc tọa độ O

Bài 10 Trong không gian với hệ toạ độ Oxyz, cho điểm M ( 2 ; − 1 ; 3 ).

1 Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng OM.Tìm toạ độ giao điểm

Ngày đăng: 05/07/2014, 09:00

Xem thêm

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w