1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 2TRƯỜNG ĐIỆN TỪ

14 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Cartesian coordinate system
Tác giả Nannapaneni Narayana Rao, Edward C. Jordan
Người hướng dẫn Distinguished Amrita Professor of Engineering
Trường học University of Illinois at Urbana-Champaign
Thể loại slide presentations
Thành phố Urbana
Định dạng
Số trang 14
Dung lượng 337 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Trang 1

Introduction to Electromagnetic Fields,

to supplement “Elements of Engineering

Electromagnetics, Sixth Edition”

by

Nannapaneni Narayana Rao

Edward C Jordan Professor of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Trang 2

Cartesian Coordinate System

Trang 3

Cartesian Coordinate System

x

y

z

a z

a y

a y

a x

a x

Trang 4

Right-handed system

xyz xy…

ax, ay, az are uniform unit vectors, that is, the

direction of each unit vector is same everywhere in space

ax ay az

ay az ax

az ax ay

Trang 5

1 12 2

 

z

P2

P1 R12

r1 r2

y x

O

Vector from P x y z, , to P x y z, ,

(1)

Trang 6

x2

x1 O

(x2 – x1)a x r1 z1 r2

P1 R12 P2

(z2 – z1)az

(y2 – y1)ay

y1

z2

y2 y

Trang 7

P1.8 A(12, 0, 0), B(0, 15, 0), C(0, 0, –20).

=

=

vector from B to C

= Vector from A to C

• Unit vector along vector from B to C

(0 – 0)ax  (0 – 15)ay  (–20 – 0)az

152  202 25

Trang 8

(c)Perpendicular distance from A to the line through B

and C

=

15 20

400 16

25

  

 

(Vector from A to C) (Vector from B to C)

BC

25

Trang 9

=

180az – 240ay – 300ax

25

12 2

dl dx a x  dy a y dz a z

z

a

x

a

y

a

dx

dy

dz

dl

 , , 

P x y z

Q x dx y dy z dz  

Trang 10

dl = dx a x + dy a y

= dx a x + f (x) dx a y

Unit vector normal to a surface:

an dl2

dl1

Curve 2 Curve 1

an  dl1 dl2

dl1 dl2

dl

dx dy = f (x) dx

z = constant plane

dz = 0

Trang 11

D1.5 Find dl along the line and having the projection dz on

the z-axis.

(a)

(b)

x 3, y –4

dx 0, dy 0

x  y 0, y  z 1

dx  dy 0, dy  dz 0

dy – dz, dx – dy dz

d dz dz dz

dz

Trang 12

(c)Line passing through (0, 2, 0) and (0, 0, 1).

x 0, dy

0 – 2  dz1 – 0

dx 0, dy – 2 dz

2 2

dz

Trang 13

(3) Differential Surface Vector (dS)

Orientation of the surface is defined uniquely by the

normal ± an to the surface.

For example, in Cartesian coordinates, dS in any plane

parallel to the xy plane is

dl1

dl2

an

x

y dS

dx dy

az

  1 2

sin

 l × l

Trang 14

(4) Differential Volume (dv)

In Cartesian coordinates,

dv dl1 • dl2 dl3

dv dx a x • dy a y dz a z

dx dy dz

dx

x

dl2

dl1

dl3 dv

Ngày đăng: 12/04/2023, 21:02

TỪ KHÓA LIÊN QUAN