1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (780)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x = 1 + 2ty = 2 +[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1

3.

Câu 3 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 4 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

4.

Câu 5 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. 2π.a

3

4π√2.a3

π√2.a3

π.a3

3 .

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(1; 1; 2).

Câu 7 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 8 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 9 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 24

5

Câu 10 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x3− 3x − 5 B y= x4− 3x2+ 2 C y= x −3

Câu 11 Phần ảo của số phức z= 2 − 3i là

Câu 12 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Trang 2

Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n4 = (1; 1; −1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n2 = (1; −1; 1)

Câu 14 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F

(x)= 1

′ (x)= −1

(x)= 2

(x)= lnx

Câu 15 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

√ 2

4 a

√ 2

6 a

√ 2

2 a

3

Câu 16 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

Câu 17 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 18 Với mọi số phức z, ta có |z+ 1|2bằng

A z+ z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z2+ 2z + 1

Câu 19 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −21008 B −21008+ 1 C −22016 D 21008

Câu 20 Số phức z= 1+ i

1 − i

!2016 + 1 − i

1+ i

!2018 bằng

Câu 21 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 22 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 23 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

11

29

29

13.

Câu 24 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 25 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2 z1

Câu 26 F(x) là một nguyên hàm của hàm số y= xex 2

Hàm số nào sau đây không phải là F(x)?

A F(x) = 1

2e

x 2

+ 2 B F(x) = 1

2(e

x 2

+ 5) C F(x)= −1

2(2 − e

x 2

) D F(x)= −1

2e

x 2

+ C

Câu 27 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Rba f(x)= F(b) − F(a)

B Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

Trang 3

a f(2x+ 3) = F(2x + 3)

a

D.Rb

a k · f(x)= k[F(b) − F(a)]

Câu 28 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A −2x + y − z − 4 = 0 B 2x + y − z − 4 = 0 C −2x + y − z + 4 = 0 D −2x + y − z + 1 = 0.

Câu 29 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng

(ABC) có phương trình là

A x − y+ z + 6 = 0 B x+ y − z − 3 = 0 C 6x + y − z − 6 = 0 D x + y − z + 1 = 0.

Câu 30 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x)= ex B F(x)= ex+ 1 C F(x) = e2x D F(x)= ex +1.

Câu 31 Tích phân I = R02(2x − 1) có giá trị bằng:

Câu 32 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

A.R f(x)dx= √ 1

R

f(x)= √2x+ 1 + C

2

√ 2x+ 1 + C

Câu 33 ChoR1

0 f(x)= 2Rv `a R1

0 g(x)= 5 R01[ f (x) − 2g(x)] bằng

Câu 34 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

2;

9 4

!

4

!

4;

5 4

!

Câu 36 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

Câu 37 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. D |z| > 2.

Câu 39 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 5

2 < |z| < 4 B 3 < |z| < 5 C. 3

2 < |z| < 3 D. 1

2 < |z| < 2

Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Trang 4

Câu 41 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

Câu 42 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a > 1 thì ax > ay ⇔ x> y

C Nếu a < 1 thì ax > ay

⇔ x< y D Nếu a > 0 thì ax > ay

⇔ x< y

Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R e2xdx=e2x

dx =5x+ C

dx = (2x+ 1)3

Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 46 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

√ 15

1

√ 5

3 .

Câu 48 Biết

π 2 R

0 sin 2xdx= ea

Khi đó giá trị a là:

Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −3 ≤ m ≤ 0 B m < 0 C −4 ≤ m ≤ −1 D m > −2.

Câu 50 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Trang 5

HẾT

Ngày đăng: 11/04/2023, 16:05