Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A 1 3 sin 3x +C B 3 sin 3x +C C −3 sin 3x +C[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tính nguyên hàmR cos 3xdx
A. 1
3sin 3x+ C
Câu 2 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A −1
2
1
6.
Câu 3 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 2x2+ 1 B y = x4+ 1 C y= x4+ 2x2+ 1 D y= −x4+ 1
Câu 4 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 4π
√
2.a3
2π.a3
π.a3
π√2.a3
Câu 5 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√
ba3
A. m
m2− 12
m2− 12
4m2− 3
Câu 6 Tìm nghiệm của phương trình 2x = (√3)x
Câu 7 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
4.
Câu 8 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 9 NếuR2
0 f(x)= 4 thì R02[1
2f(x) − 2] bằng
Câu 10 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 11 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 12 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 13 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 14 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Trang 2Câu 15 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
C.R f(x)= sinx + x2
2 + C
Câu 16 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Câu 17 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 4√5 B |w|= √48 C |w|= √85 D |w|= 6√3
Câu 19 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 20 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 21 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 11
29
11
29
13.
Câu 22 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 23 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 24 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 25 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 26 ChoRa3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
2; 1).
Câu 27 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 3; −1) B (1; 1; 3) C (−1; −1; −3) D (3; 1; 1).
Câu 28 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F(x) = f′
(x)+ C B F′(x)= f (x) C F(x)= f′
(x) D F′(x)+ C = f (x)
Câu 29 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x) = ex B F(x) = ex + 1 C F(x)= e2x D F(x)= ex +1.
Câu 30 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A x+ 1
2ln
2ln
2x+ lnx + C C x+ ln2x+ C D ln2x+ lnx + C
Câu 31 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= 2023cos(2023x) B f (x)= −2023cos(2023x)
C f (x)= − 1
Trang 3Câu 32 Hàm số f (x) thoả mãn f′
(x)= xxlà:
A (x − 1)x+ C B x2+ x+1
x+ 1 + C. C (x+ 1)x+ C. D x2 x+ C.
Câu 33 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2 = 9 B (x+ 2)2+ y2+ z2 = 3
C (x − 2)2+ y2+ z2 = 9 D (x − 2)2+ y2+ z2 = 3
Câu 34 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 2 B |w|min= 3
2. C |w|min = 1 D |w|min = 1
2.
Câu 36 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 5
√ 6
√ 2
Câu 37 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 38 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
√
2
Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 41 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
1
√ 2
Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Trang 4Câu 44 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 45 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 7 = 0 B 2x+ y − 4z + 5 = 0
C 2x+ y − 4z + 1 = 0 D −2x − y+ 4z − 8 = 0
Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2
nhỏ nhất Tính tổng a+ b + c
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(5
3;
11
3 ;
17
7
3;
10
3 ;
31
4
3;
10
3 ;
16
2
3;
7
3; 21
3 ).
Trang 5HẾT