1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (622)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 119,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

√ 3π

√ 3

Câu 2 Công thức nào sai?

Câu 3 Hàm số nào sau đây đồng biến trên R?

C y= √x2+ x + 1 − √x2− x+ 1 D y= x4+ 3x2+ 2

Câu 4 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

A V = 10π

Câu 5 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 6 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M′(2; −3; −1) B M′(2; 3; 1) C M′(−2; 3; 1) D M′(−2; −3; −1)

Câu 7 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2 B m > 2e C m ≥ e−2 D m > e2

Câu 9 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [22;+∞) B (7

4;+∞)

C (7

4; 2]S[22;+∞) D [7

4; 2]S[22;+∞)

Câu 10 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 11 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx= F(2x − 1) + C B. R f(2x − 1)dx = 2F(x) − 1 + C

2F(2x − 1)+ C

Câu 12 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2 = 1

V1

V2 = 1

V1

V2 = 1

6.

Trang 2

Câu 13 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2

C ln(a

b)= ln a

Câu 14 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 ≤ m ≤ 2 B 0 < m < 2 C m= 2 D −2 < m < 2.

Câu 15 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình

vuông Tính thể tích của khối trụ

Câu 16 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A ln 2 − 1

1

1

2− ln 2.

Câu 17 Kết quả nào đúng?

A.R sin2xcos x= −sin3x

C.R sin2xcos x= cos2x sin x + C D.R sin2xcos x= sin3x

Câu 18 Hàm số nào sau đây không có cực trị?

Câu 19 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên R B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

C Hàm số đồng biến trên R D Hàm số nghịch biến trên (0;+∞)

Câu 20 Cho hình phẳng (D) giới hạn bởi các đường y= √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành

A V = π

3 .

Câu 21 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường elip B Đường hypebol C Đường parabol D Đường tròn.

Câu 22 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 23 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A bc > 0 B ab < 0 C ac < 0 D ad > 0

Câu 24 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A log x > log y B log 1

a

x> log1

a

y C logax> logay D ln x > ln y.

Câu 25 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R= 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất

Câu 26 Cho hình chóp S ABCcó S A vuông góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d

BAC = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC

A V = 5

5

√ 5π

√ 5πa3

Trang 3

Câu 27 Tính tích phân I = R

1

ln x

x dx, (n > 1)

A I = 1

n+ 1.

Câu 28 Họ nguyên hàm của hàm số f (x)= (2 ln x+ 3)3

A. 2 ln x+ 3

Câu 29 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục

bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được

A. 2a

2b

4a2b

2a2b

4a2b

3√2π.

Câu 30 Tập xác định của hàm số y= logπ(3x− 3) là:

Câu 31 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC

Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)

A.

3

2

√ 10

√ 5

5 .

Câu 32 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là

3x

3+ x4

4 − 4x+ 4 D. 2

3x

3+ x4

4 − 4x.

Câu 33 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3

3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R

Câu 34 Biết

π 2 R

0

sin 2xdx= ea Khi đó giá trị a là:

Câu 35 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 14; 15) B 2→−u + 3−→v = (3; 14; 16)

C 2→−u + 3−→v = (1; 13; 16) D 2→−u + 3−→v = (2; 14; 14)

Câu 36 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình đúng với mọi x ∈ [ 1; 3].

B Bất phương trình vô nghiệm.

C Bất phương trình đúng với mọi x ∈ (4;+∞)

D Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

Câu 37 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 38 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 7 = 0 B −2x − y+ 4z − 8 = 0

C 2x+ y − 4z + 1 = 0 D 2x+ y − 4z + 5 = 0

Trang 4

Câu 39 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 40 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 + 3 sin 3x)5x +cos3xln 5 B y′ = 5x +cos3xln 5

C y′ = (1 − 3 sin 3x)5x +cos3xln 5. D y′ = (1 − sin 3x)5x +cos3xln 5

Câu 41 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 42 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 14; 15) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (1; 13; 16) D 2→−u + 3−→v = (3; 14; 16)

Câu 44 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

64.

Câu 45 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 46 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ n + 3

C log22250= 2mn+ 2n + 3

Câu 47 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 48 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A m > −2 B −4 ≤ m ≤ −1 C m < 0 D −3 ≤ m ≤ 0.

Câu 49 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3

R

2

|x2− 2x|dx

B.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx −

3

R

2

(x2− 2x)dx

Trang 5

HẾT

Ngày đăng: 04/04/2023, 11:13

w