Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = 2x + 2017∣∣∣∣∣x∣∣∣∣∣ + 1 (1) Mệnh đề nào dưới đây là đúng[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
B Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
Câu 2 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 3 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(a
b)= ln a
2)= ln a + (ln b)2
C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b
Câu 4 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 5 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho
có diện tích lớn nhất bằng?
A. 3
√
3
√ 3
2) C 1 (m2) D 3√3(m2)
Câu 6 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A 0 < m < 2 B −2 < m < 2 C m= 2 D −2 ≤ m ≤ 2.
Câu 7 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 1
1
2
Câu 8 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
√ 3
a
√ 3
a
√ 2
2 .
Câu 9 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 24
5
√
Câu 10 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Trang 2Câu 11 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 12 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 13 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16
16
16π
15 .
Câu 14 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 15 Cho cấp số nhân (un) với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
A. 1
7
1
2.
Câu 16 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 17 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √48 B |w|= 6√3 C |w|= 4√5 D |w|= √85
Câu 19 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 20 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 23 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2 z1
là
Câu 24 Với mọi số phức z, ta có |z+ 1|2bằng
A z2+ 2z + 1 B z+ z + 1 C z · z+ z + z + 1 D |z|2+ 2|z| + 1
Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 26 Tính tích phân I = R2
1 xexdx
Trang 3Câu 27 Hàm số f (x) thoả mãn f′
(x)= xxlà:
A (x − 1)x+ C B x2 x+ C C (x+ 1)x+ C D x2+ x+1
x+ 1 + C.
Câu 28 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (1; 1; 3) B (3; 1; 1) C (−1; −1; −3) D (3; 3; −1).
Câu 29 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= − 1
C f (x)= −2023cos(2023x) D f (x)= 2023cos(2023x)
Câu 30 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =
1, tính tích phân I = R5
0 1+ f (x).
A I = 5
Câu 31 Tìm nguyên hàm I = R xcosxdx
A I = x2sinx
2 + C
Câu 32 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A 6x + y − z − 6 = 0 B x + y − z − 3 = 0 C x − y+ z + 6 = 0 D x+ y − z + 1 = 0
Câu 33 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
A (0;1
1
2; 1).
Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 35 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là một số thực không dương B |z|= 1
C Phần thực của z là số âm D z là số thuần ảo.
Câu 37 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 38 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
1
√ 2
3 .
Trang 4Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P = (|z| − 2)2 B P =
|z|2− 42 C P=
|z|2− 22 D P= (|z| − 4)2
Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
Câu 42 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax = 10
√ 2
√ 5
√ 6
√ 2
3 .
Câu 43 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
5
1
√ 3
√ 3
4 .
Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 45 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
6.
Câu 48 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ 2n + 3
C log22250= 3mn+ n + 4
Câu 49 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
3
5a√2
5a√3
5a√2
Câu 50 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1)log4e. B y
′ = √ 1
x2− 1 ln 4. C y
2(x2− 1) ln 4. D y
(x2− 1) ln 4.
Trang 5HẾT