1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (878)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,89 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = 2x + 2017∣∣∣∣∣x∣∣∣∣∣ + 1 (1) Mệnh đề nào dưới đây là đúng[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

B Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

Câu 2 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 3 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(a

b)= ln a

2)= ln a + (ln b)2

C ln(ab)= ln a ln b D ln(ab2)= ln a + 2 ln b

Câu 4 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 5 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A. 3

3

√ 3

2) C 1 (m2) D 3√3(m2)

Câu 6 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A 0 < m < 2 B −2 < m < 2 C m= 2 D −2 ≤ m ≤ 2.

Câu 7 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 1

1

2

Câu 8 Cho hình hộp chữ nhật ABCD.A

B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

√ 3

a

√ 3

a

√ 2

2 .

Câu 9 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 24

5

Câu 10 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Trang 2

Câu 11 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 12 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 13 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16

16

16π

15 .

Câu 14 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 15 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 1

7

1

2.

Câu 16 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 17 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √48 B |w|= 6√3 C |w|= 4√5 D |w|= √85

Câu 19 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 20 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 23 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2 z1

Câu 24 Với mọi số phức z, ta có |z+ 1|2bằng

A z2+ 2z + 1 B z+ z + 1 C z · z+ z + z + 1 D |z|2+ 2|z| + 1

Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 26 Tính tích phân I = R2

1 xexdx

Trang 3

Câu 27 Hàm số f (x) thoả mãn f

(x)= xxlà:

A (x − 1)x+ C B x2 x+ C C (x+ 1)x+ C D x2+ x+1

x+ 1 + C.

Câu 28 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (1; 1; 3) B (3; 1; 1) C (−1; −1; −3) D (3; 3; −1).

Câu 29 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số

A f (x)= − 1

C f (x)= −2023cos(2023x) D f (x)= 2023cos(2023x)

Câu 30 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R5

0 1+ f (x).

A I = 5

Câu 31 Tìm nguyên hàm I = R xcosxdx

A I = x2sinx

2 + C

Câu 32 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng

(ABC) có phương trình là

A 6x + y − z − 6 = 0 B x + y − z − 3 = 0 C x − y+ z + 6 = 0 D x+ y − z + 1 = 0

Câu 33 ChoR3

a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

A (0;1

1

2; 1).

Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 35 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B |z|= 1

C Phần thực của z là số âm D z là số thuần ảo.

Câu 37 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 38 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

1

√ 2

3 .

Trang 4

Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P = (|z| − 2)2 B P =

|z|2− 42 C P= 

|z|2− 22 D P= (|z| − 4)2

Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

A. 1

3

Câu 42 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax = 10

√ 2

√ 5

√ 6

√ 2

3 .

Câu 43 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

5

1

√ 3

√ 3

4 .

Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 45 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

6.

Câu 48 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ 2n + 3

C log22250= 3mn+ n + 4

Câu 49 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√2

5a√3

5a√2

Câu 50 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

(x2− 1)log4e. B y

′ = √ 1

x2− 1 ln 4. C y

2(x2− 1) ln 4. D y

(x2− 1) ln 4.

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:51

🧩 Sản phẩm bạn có thể quan tâm