1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (661)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 123,19 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0;[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; −1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; 1; 2).

Câu 2 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B −2 ≤ m ≤ 2 C −2 < m < 2 D 0 < m < 2.

Câu 3 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −1 B f (−1)= −3 C f (−1)= 3 D f (−1)= −5

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3

Câu 5 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

m2− 3

4m2− 3

m2− 12

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 2; 0) B A(0; 0; 3) C A(1; 0; 3) D A(0; 2; 3).

Câu 7 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(3; 7; 4) B C(5; 9; 5) C C(−3; 1; 1) D C(1; 5; 3).

Câu 9 Tính đạo hàm của hàm số y = 5x

A y′= 5x B y′ = 5x

′ = x.5x−1 D y′ = 5x

ln 5

Câu 10 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 11 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

A. a

2

2.

Câu 13 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A 2(2x+ 1)−

1

3(2x+ 1)−

4

3

Trang 2

C (2x+ 1)−

1

3(2x+ 1)−

4

3

Câu 14 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho đồng biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (−∞; 3).

C Hàm số đã cho nghịch biến trên khoảng (3;+∞)

D Hàm số đã cho nghịch biến trên khoảng (1; 4).

Câu 15 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 2

2x − 2

1+ x

x −2 .

Câu 16 Nếu

6

R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1

( f (x)+ g(x)) bằng

Câu 17 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?

A. 7

3

7

3

4.

Câu 18 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

B Phương trình đã cho luôn có nghiệm.

C Phương trình đã cho có tích hai nghiệm bằng c

a.

D Phương trình đã cho có tổng hai nghiệm bằng −b

a .

Câu 19 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa

độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?

Câu 20 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 21 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √2 B |w|= √3 C |w|= 2√2 D |w|= √5

Câu 22 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là

Câu 23 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 24 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là

A 0 < m < 3

4. B m ≥ 0. C m < 0 hoặc m >

3

4. D 0 ≤ m <

3

4.

Câu 25 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Trang 3

Câu 26 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 27 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Câu 28 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 18

9

4

1

7.

Câu 29 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A M(2; −1; −2) B Q(1; 2; −3) C P(1; 2; 3) D N(2; 1; 2).

Câu 30 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 1

11

3 .

Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; −2; −3) B (−1; 2; 3) C (1; 2; −3) D (1; −2; 3).

Câu 32 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2= (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n4 = (1; 1; −1)

Câu 33 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−2; −4; −6) B (1; 2; 3) C (−1; −2; −3) D (2; 4; 6).

Câu 34 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 35 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 36 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

3

√ 2

Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2

97

√ 85

Câu 38 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 39 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B. 5

2 < |z| < 4 C 3 < |z| < 5 D. 3

2 < |z| < 3

Trang 4

Câu 40 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1

Câu 41 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 43 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A −4 < m < −3 B −4 < m ≤ −3 C m > −4 D −4 ≤ m < −3.

Câu 44 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

30

Câu 45 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = 2 B y= −1 và x = 2 C y= 1 và x = −1 D y= 2 và x = 1

Câu 46 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 47 Thể tích khối lập phương có cạnh 3a là:

Câu 48 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A [−3; 3] B (−∞; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3].

Câu 49 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A (3; −1; −1) B (1; −2; 0) C A(−1; 2; 0) D (−1; −3; 1).

Câu 50 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= −x4+ 2x2+ 2 B y= x4− 2x2+ 2 C y= x3− 3x2+ 2 D y= −x3+ 3x2+ 2

HẾT

Ngày đăng: 10/04/2023, 14:31