1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (661)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ
Định dạng
Số trang 4
Dung lượng 125,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) B Hàm số nghịch biến trên (0;+∞)

C Hàm số nghịch biến trên R D Hàm số đồng biến trên R.

Câu 2 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a

2

q

b2− √3a2

√ 3b2− a2

C VS.ABC =

√ 3a2b

√ 3ab2

12 .

Câu 3 Kết quả nào đúng?

A.R sin2xcos x= sin3x

C.R sin2xcos x= −cos2x sin x + C D.R sin2xcos x= −sin3x

Câu 4 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

3.

Câu 5 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < π thì y > 1 − 4π2 B Nếux= 1 thì y = −3

C Nếux > 2 thìy < −15 D Nếu 0 < x < 1 thì y < −3.

Câu 6 Hàm số nào sau đây đồng biến trên R?

A y= √x2+ x + 1 − √x2− x+ 1 B y= x2

Câu 7 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường tròn B Đường elip C Đường hypebol D Đường parabol.

Câu 8 Cho lăng trụ đều ABC.A

B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A. √a

5

√ 3a

2a

√ 5

√ 5a

3 .

Câu 9 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho nghịch biến trên khoảng (3;+∞)

C Hàm số đã cho đồng biến trên khoảng (1; 4).

D Hàm số đã cho đồng biến trên khoảng (−∞; 3).

Trang 2

Câu 11 Cho khối lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

′B′C′

A. a

3√

2

a3

a3√ 2

a3

2.

Câu 12 Nếu

6

R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1

( f (x)+ g(x)) bằng

Câu 13 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

A. 2a

3

a3

Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; 2; 3) B.→−n = (1; −2; 3) C.→−n = (1; −2; −1) D.→−n = (1; 3; −2)

Câu 15 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 16 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

A C3

10

Câu 17 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 18 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B C.Truehỉ có số 0 C Không có số nào D Chỉ có số 1.

Câu 19 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

11

29

11

13.

Câu 20 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 21 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 22 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 23 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 24 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|=

34

√ 34

Câu 25 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Trang 3

Câu 26 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 27 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n1= (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)

Câu 28 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

3

2)

Câu 29 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 30 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 31 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16π

16

16

15.

Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là số thuần ảo B Phần thực của z là số âm.

C z là một số thực không dương D |z|= 1

Câu 38 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1

+ 1

z2

= 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. 3

2

Trang 4

Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P = 2016 C P= −2016 D P= 1

Câu 40 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax = 3

√ 6

√ 2

√ 2

√ 5

5 .

Câu 41 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 42 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B. 1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. D |z| <

1

2.

Câu 43 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

Câu 44 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 45 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là

Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

1

3

4;

1

3

4;

1

3

4;

3

2; −1).

Câu 47 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 20 B (x+ 4)2+ (y − 8)2 = 20

C (x+ 4)2+ (y − 8)2 = 2√5 D (x − 4)2+ (y + 8)2 = 2√5

Câu 48 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A A3

Câu 49 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 50 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

A V = a3

HẾT

Ngày đăng: 10/04/2023, 09:02