Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình lập phương ABCD.A′
B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 2 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 3 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
√
√
l2− R2 D 2πRl.
Câu 4 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 5 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′
A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′
D′theo a
Câu 6 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên R.
C Hàm số nghịch biến trên R D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
Câu 7 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A logax> logay B ln x > ln y C log x > log y D log 1
a
x> log1
a y
Câu 8 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 9 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 512π
2 .
Câu 10 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5(x+ y2)?
Câu 11 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho đồng biến trên khoảng (1; 4).
B Hàm số đã cho nghịch biến trên khoảng (3;+∞)
C Hàm số đã cho nghịch biến trên khoảng (1; 4).
D Hàm số đã cho đồng biến trên khoảng (−∞; 3).
Câu 12 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Trang 2
Câu 13 Tính đạo hàm của hàm số y= 5x
A y′ = x.5x−1 B y′ = 5x
′ = 5xln 5 D y′ = 5x
Câu 14 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A N(1 ; 1 ; 7) B M(0 ; 0 ; 2) C P(4 ; −1 ; 3) D Q(4 ; 4 ; 2).
Câu 15 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 16 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính
e 2
R
1
f(ln x)
Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z − z = 2a B z+ z = 2bi C z · z= a2− b2 D |z2|= |z|2
Câu 18 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009i B (1+ i)2018 = 21009i C (1+ i)2018 = 21009 D (1+ i)2018 = −21009
Câu 19 Với mọi số phức z, ta có |z+ 1|2bằng
A z2+ 2z + 1 B z+ z + 1 C z · z+ z + z + 1 D |z|2+ 2|z| + 1
Câu 20 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 21 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 22 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B 0 và 1 C Không có số nào D Chỉ có số 1.
Câu 23 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 24 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 25 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 26 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; −2; 3) B (1; 2; −3) C (−1; −2; −3) D (−1; 2; 3).
Câu 27 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 28 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
3.
Câu 29 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16
16π
16
15.
Trang 3Câu 30 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
A. 1
3
Câu 31 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
C.R f(x)= sinx + x2
2 + C
Câu 32 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 33 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 34 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
3
2 < |z| < 2 C. 1
2 < |z| < 3
5
2 < |z| < 7
2.
Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 39 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 2 C |w|min = 1
2. D |w|min = 1
Câu 40 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;+∞
!
4
!
4;
5 4
!
Câu 42 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B. 3
2 < |z| < 3 C. 5
2 < |z| < 4 D 3 < |z| < 5.
Trang 4Câu 43 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 44 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 27
5 + 6
5 −
6
5+ 27
5 −
27
5 i.
Câu 45 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A C3
Câu 46 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : y + z − 1 = 0 B (P) : x − 2y + 1 = 0 C (P) : x − 2z + 5 = 0 D (P) : y − z + 2 = 0.
Câu 47 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(2x)
1
4x
−1
1
2(x
1
2
Câu 48 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
5π.
Câu 49 Cho hàm số y= f (x) có đạo hàm f′(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 50 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Trang 5HẾT