1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (549)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 122,9 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

4.

Câu 2 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 3 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.

Tính thể tích của khối trụ

Câu 4 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

B Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

Câu 5 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 7 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B 0 < m < 2 C −2 < m < 2 D −2 ≤ m ≤ 2.

Câu 8 Tính nguyên hàmR cos 3xdx

A. 1

Câu 9 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= 1

′ = 1

′ = ln3

′ = − 1 xln3.

Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

Câu 11 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 2

3.

Trang 2

Câu 12 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 13 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 14 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 18

1

9

4

35.

Câu 15 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; 2; 3) B (−1; −2; −3) C (1; −2; 3) D (1; 2; −3).

Câu 16 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?

Câu 17 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 18 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 19 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2 z1

Câu 20 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 21 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

29

11

11

13.

Câu 22 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z= 1

Câu 25 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009i D (1+ i)2018 = −21009

Trang 3

Câu 26 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z − 12 = 0 B 3x − 2y+ z − 4 = 0

C 3x − 2y+ z + 4 = 0 D 3x+ 2y + z − 4 = 0

Câu 27 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R05

1+ f (x).

A I = 5

2.

Câu 28 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

A.R f(x)dx= √ 1

R

f(x)= √2x+ 1 + C

C.R f(x)dx= 1

2

Câu 29 F(x) là một nguyên hàm của hàm số y= xex 2

Hàm số nào sau đây không phải là F(x)?

A F(x)= 1

2(e

x 2

+ 5) B F(x)= −1

2e

x 2

+ C C F(x) = −1

2(2 − e

x 2

) D F(x)= 1

2e

x 2

+ 2

Câu 30 Mệnh đề nào sau đây sai?

A.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

C.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

D.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

Câu 31 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2

−1 f′(x) bằng:

Câu 32 Hàm số f (x) thoả mãn f′(x)= xxlà:

A (x+ 1)x+ C B (x − 1)x+ C C x2 x+ C D x2+ x+1

x+ 1 + C.

Câu 33 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R34 f(x)= 4 Tích phân R03 f(x) bằng

Câu 34 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 6

√ 2

√ 5

5 .

Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 36 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A 3 < |z| < 5 B. 3

2 < |z| < 3 C. 5

2 < |z| < 4 D. 1

2 < |z| < 2

Câu 37 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

2 ≤ |z| ≤ 2. B |z| <

1

1

2 < |z| < 3

2. D |z| > 2.

Câu 38 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Trang 4

Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B 2 < |z| < 5

5

2 < |z| < 7

1

2 < |z| < 3

2.

Câu 40 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 42 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 4 B |z|= 1

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R (2x+ 1)2

dx= (2x+ 1)3

dx =5x+ C

C.R e2xdx=e2x

Câu 44 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′

Tính giá trị cos α

A.

3

1

√ 5

√ 3

4 .

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

30

3a

√ 6

a

√ 15

3a

√ 6

Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 48 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 49 Biết

π 2 R

0 sin 2xdx= ea Khi đó giá trị a là:

Câu 50 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ n + 3

C log22250= 2mn+ 2n + 3

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:40

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm