Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A 0 < m < 2 B m= 2 C −2 ≤ m ≤ 2 D −2 < m < 2.
Câu 2 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 5 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 4π
√
2.a3
π.a3
2π.a3
π√2.a3
Câu 6 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 2x2+ 1 B y = x4+ 1 C y= x4+ 2x2+ 1 D y= −x4+ 1
Câu 7 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 1
3. B m < 0. C Không tồn tại m. D 0 < m <
1
3.
Câu 9 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 10 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 11 NếuR−14 f(x)= 2 và R4
−1g(x)= 3 thì R4
−1[ f (x)+ g(x)] bằng
Câu 12 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−1; −2; −3) B (2; 4; 6) C (1; 2; 3) D (−2; −4; −6).
Câu 14 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Trang 2Câu 15 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16π
16
16
9 .
Câu 16 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = π1xπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1
Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.
C Phần thực là 3 và phần ảo là 2i D Phần thực là3 và phần ảo là 2.
Câu 18 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 19 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z · z+ z + z + 1 C z2+ 2z + 1 D z+ z + 1
Câu 20 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 21 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 22 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 23 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 24 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 25 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 26 Mệnh đề nào sau đây sai?
A.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
B. R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
C.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
D.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
Câu 27 Biết
1 R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
Câu 28 ChoR01 f(x)= 2R v `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 29 Họ nguyên hàm của hàm số f (x)= cosx + sinx là
A F(x) = sinx − cosx + C B F(x)= sinx + cosx + C
C F(x) = −sinx + cosx + C D F(x)= −sinx − cosx + C
Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x − 2)2+ y2+ z2= 3 B (x − 2)2+ y2+ z2 = 9
C (x+ 2)2+ y2+ z2= 9 D (x+ 2)2+ y2+ z2 = 3
Trang 3Câu 31 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A x+ ln2x+ C B x+ 1
2ln
2x+ C C. 1
2ln
2x+ lnx + C D ln2x+ lnx + C
Câu 32 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (3; 1; 4) B (3; −1; −4) C (−3; −1; −4) D (−3; −1; 4).
Câu 33 BiếtR8
1 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
C.R14[4 f (x) − 2g(x)]= −2 D.R48 f(x)= −5
Câu 34 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
4;
5
4
!
4;+∞
!
2;
9 4
!
4
!
Câu 36 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
A a2+ b2+ c2− ab − bc − ca B a2+ b2+ c2+ ab + bc + ca
Câu 37 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 38 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B. 3
2 < |z| < 3 C 3 < |z| < 5 D. 5
2 < |z| < 4
Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
√ 2
1
5.
Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 41 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 2
√ 5
√ 6
2 .
Trang 4Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 43 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 44 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ n + 2
C log22250= 2mn+ 2n + 3
Câu 45 Cho bất phương trình 3
√ 2(x−1)+1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ [ 1; 3].
B Bất phương trình vô nghiệm.
C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D Bất phương trình đúng với mọi x ∈ (4;+∞)
Câu 46 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
6.
Câu 47 Biết
π 2 R
0 sin 2xdx= ea Khi đó giá trị a là:
Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
30
3a√6
3a√6
a√15
Câu 49 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
32π
33π
5 .
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3√ 5
a3√ 15
a3√ 15
Trang 5HẾT