Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng? A ln(ab2[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + (ln b)2 B ln(ab2)= ln a + 2 ln b
C ln(a
b)= ln a
Câu 2 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. π√3.a2
π√2.a2
2π√2.a2
√ 3.a2
Câu 3 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (1
Câu 4 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (−3; 1) B Hàm số nghịch biến trên khoảng (−3; 1).
C Hàm số nghịch biến trên khoảng (−∞; −3) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 5 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 32π
5 .
Câu 6 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√
ba3
A. 4m
m2− 12
m2− 3
m2− 12
Câu 7 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 8 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
2.
Câu 9 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
4.
Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
11
Câu 11 Cho hàm số y = f (x) có đạo hàm f′
(x)= (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trang 2Câu 12 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 13 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 14 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln3
2
Câu 15 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 16 Có bao nhiêu số nguyên x thỏa mãn log3x
343 < log7x2− 16
Câu 17 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
11
29
11
13.
Câu 18 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19 Với mọi số phức z, ta có |z+ 1|2bằng
A z+ z + 1 B z · z+ z + z + 1 C z2+ 2z + 1 D |z|2+ 2|z| + 1
Câu 20 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 21 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 22 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 23 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 24 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 25 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là −3 và phần ảo là−2 B Phần thực là 3 và phần ảo là 2i.
C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.
Câu 26 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x) = −1
2cos2x. B F(x) = sin2x C F(x)= −cos2x D F(x)= −cos2x
Câu 27 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4
3 f(x)= 4 Tích phân R3
0 f(x) bằng
Trang 3Câu 28 Biết
1
R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
A ab= 5
Câu 29 Tích phânR1
0 e−x dx bằng
A. e −1
1
1
e.
Câu 30 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= 2023cos(2023x) B f (x)= − 1
2023cos(2023x).
C f (x)= −2023cos(2023x) D f (x)= cos(2023x)
Câu 31 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là
A (3; 3; −1) B (1; 1; 3) C (3; 1; 1) D (−1; −1; −3).
Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4).
Câu 33 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 34 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B |z|= 1
C z là một số thực không dương D z là số thuần ảo.
Câu 38 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 2 B |z|= 1
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 40 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
2 < |z| < 3
2. C |z| <
1
2. D |z| > 2.
Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
A |A| > 1 B |A| < 1 C |A| ≤ 1 D |A| ≥ 1.
Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 0;1
4
!
4;
5 4
!
2;
9 4
!
4;+∞
!
Câu 43 Biết a, b ∈ Z sao choR (x+ 1)e2xdx= (ax+ b
2x+ C Khi đó giá trị a + b là:
Trang 4Câu 44 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây.
Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A −3 ≤ m ≤ 0 B m < 0 C m > −2 D −4 ≤ m ≤ −1.
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v
A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (1; 13; 16)
C 2→−u + 3−→v = (2; 14; 14) D 2→−u + 3−→v = (1; 14; 15)
Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 23
27
25
29
4 .
Câu 48 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
6.
Câu 49 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. a
√
15
3a√6
3a√30
3a√6
Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Trang 5HẾT