1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (511)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 120,37 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y = 0; x = 2 Tính thể tích V củ[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32π

3.

Câu 2 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 3 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.

Tính thể tích của khối trụ

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1

3.

Câu 5 Tìm nghiệm của phương trình 2x = (√3)x

Câu 6 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + 2 ln b B ln(a

b)= ln a

ln b.

C ln(ab)= ln a ln b D ln(ab2)= ln a + (ln b)2

Câu 7 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A ln 2+ 1

1

1

1

2 − ln 2.

Câu 8 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [7

4; 2]S[22;+∞) B (7

4;+∞)

C (7

4; 2]S[22;+∞) D [22;+∞)

Câu 9 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 10 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 11 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 12 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= −x4+ 2x2+ 2 B y= x4− 2x2+ 2 C y= −x3+ 3x2+ 2 D y= x3− 3x2+ 2

Trang 2

Câu 13 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

Câu 14 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= −6

5 −

27

5 −

6

5+ 27

5 + 6

5i.

Câu 15 Cho lăng trụ đứng ABC.A′B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′BC)bằng

600Biết diện tích của tam giác∆A′

BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′

A V = a3√

√ 3

3 .

Câu 16 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 17 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

A. 8

Câu 18 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 19 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 20 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = 1

x

Câu 21 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2



x2+ y2

≤ log3x+ log2

x2+ y2+ 24x

?

Câu 22 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 23 Cho hàm số y= ax +b

cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm

số đã cho và trục hoành là

Câu 24 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 25 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 26 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

3

2)

Trang 3

Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

5

24.

Câu 28 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 29 NếuR4

−1 f(x)= 2 và R4

−1g(x)= 3 thì R4

−1[ f (x)+ g(x)] bằng

Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 31 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 1

11

Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 33 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

√ 2

2 a

√ 2

4 a

√ 2

6 a

3

Câu 34 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 35 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= √2 B max |z|= 2 C max |z|= 1 D max |z|= 3

Câu 36 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 4 B max |z|= 3 C max |z|= 6 D max |z|= 7

Câu 37 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một đường thẳng B Một đường tròn C Một Elip D Một Parabol.

Câu 38 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

4 .

Câu 39 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i

trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 15

4 .

Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 4 = 0 B x+ y − 5 = 0 C x − y+ 8 = 0 D x+ y − 8 = 0

Trang 4

Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x+ 1)2+ (y − 2)2 = 125 B x= 2

C (x − 1)2+ (y − 4)2 = 125 D (x − 5)2+ (y − 4)2 = 125

Câu 42 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√5 B max T = 2√5 C max T = 3√2 D max T = 2√10

Câu 43 Hàm số nào trong các hàm số sau đồng biến trên R.

C y= 4x+ 1

Câu 44 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

A D = (−∞; 0)

B D = (−∞; −1] ∪ (1; +∞)

D D = (1; +∞)

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 47 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 48 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 14; 15)

C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 13; 16)

Câu 50 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 125π

3

500π√3

250π√3

400π√3

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:24

🧩 Sản phẩm bạn có thể quan tâm

w