1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (511)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 - 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 119,42 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x− √ 2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ th[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Không có tiệm cận.

B Không có tiệm cận ngang và có một tiệm cận đứng.

C Có một tiệm cận ngang và không có tiệm cận đứng.

D Có một tiệm cận ngang và một tiệm cận đứng .

Câu 2 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4; 2]S[22;+∞) B [7

4;+∞)

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − y − 2z = 0 B (P) : x + y + 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x − y + 2z = 0.

Câu 4 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 ≤ m ≤ 2 B −2 < m < 2 C 0 < m < 2 D m= 2

Câu 5 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A.

2.a2

π√2.a2

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; −2) B I(1; 1; 2) C I(0; 1; 2) D I(0; −1; 2).

Câu 7 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 8 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′

; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2 = 1

V1

V2 = 1

V1

V2 = 1

3.

Câu 9 Cho cấp số nhân (un) với u1 = −1

2; u7 = −32 Tìm q?

A q= ±1

Câu 10 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(x

2+ 1)

1

2 B 3x(x2+ 1)

1

2(2x)

1

4x

−1

4

Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

Trang 2

A −x+ 2y + 2z + 4 = 0 B x − 2y − 2z − 4= 0.

C 3x − 4y+ 6z + 34 = 0 D x+ 2y + 2z + 8 = 0

Câu 12 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 13 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 14 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 209

1

1

8

105.

Câu 15 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 2 và x = 1 B y= −1 và x = 2 C y= 1 và x = −1 D y= 1 và x = 2

Câu 16 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; −3; 4) B.→−n = (2; 3; −4) C.→−n = (−2; 3; 4) D.→−n = (−2; 3; 1)

Câu 17 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 18 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

√ 2

√ 2

4 a3

Câu 19 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 20 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Câu 21 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

Câu 22 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

Câu 23 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x3− 3x − 5 D y= x−3

x−1

Câu 24 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 25 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 26 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Trang 3

Câu 27 Trong không gian Oxyz, cho đường thẳng d : x −1

2 = y −2

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B M(2; −1; −2) C P(1; 2; 3) D N(2; 1; 2).

Câu 28 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16π

16π

16

15.

Câu 29 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 5

5 .

Câu 30 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

(x)= lnx D F′(x)= −1

x2

Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 32 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 33 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 1

3πrl2

Câu 34 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 1 B max |z|= 2 C max |z|= √2 D max |z|= 3

Câu 35 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 7 B max |z|= 6 C max |z|= 4 D max |z|= 3

Câu 36 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 8 = 0 B x+ y − 5 = 0 C x+ y − 8 = 0 D x − y+ 4 = 0

Câu 37 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= 1 + √27 hoặcw= 1 − √27 B w= 1 + √27i hoặcw= 1 − √27i

C w= √27 − i hoặcw= √27+ i D w= −√27 − i hoặcw= −√27+ i

Câu 38 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 39 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′

là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2

⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √2

4

1

1

2.

Trang 4

Câu 40 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= 50 B |z|= √33 C |z|= √10 D |z|= 5√2

Câu 41 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′

là điểm biểu diễn của số phức z′ = 1+ i

2 z trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 25

4 .

Câu 42 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 43 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 400π

3

125π√3

250π√3

500π√3

Câu 44 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 29

25

23

27

4 .

Câu 45 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 2 hoặc m < −1 B m > 1 hoặc m < −1

3 C m < −2. D m > 1.

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= −1 + 2t

y= 2 + 3t

z= −4 − 5t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t

x= 1 − 2t

y= −2 + 3t

z= 4 + 5t

x= 1 + 2t

y= −2 + 3t

z= 4 − 5t

Câu 47 Tìm tập xác định D của hàm số y=

r

log23x+ 1

x −1

A D = (1; +∞)

B D = (−∞; 0)

D D = (−∞; −1] ∪ (1; +∞)

Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R e2xdx=e2x

C.R (2x+ 1)2dx= (2x+ 1)3

Câu 49 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 50 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

31π

32π

5 .

Trang 5

HẾT

Ngày đăng: 05/04/2023, 18:29

w