LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đạo hàm của hàm số y = log√2 ∣∣∣∣∣3x − 1 ∣∣∣∣∣ là A y′ = 6 (3x − 1) ln 2 B y′ = 2[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 6
(3x − 1) ln 2. B y
(3x − 1) ln 2. C y
′ = 2 3x − 1
ln 2
3x − 1
ln 2
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3. B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1
3.
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 3
Câu 3 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 4 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 5 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 6 Cho hàm số f (x) thỏa mãn f′′
(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −5 B f (−1)= −3 C f (−1)= −1 D f (−1)= 3
Câu 7 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A (7
4; 2]S[22;+∞) B [7
4; 2]S[22;+∞) C (7
4;+∞)
D [22;+∞)
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 9 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD =
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 10 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (−2; 3; 1) C.→−n = (2; 3; −4) D.→−n = (−2; 3; 4)
Câu 12 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x4− 2x2+ 2 B y= −x4+ 2x2+ 2 C y= x3− 3x2+ 2 D y= −x3+ 3x2+ 2
Câu 13 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Trang 2Câu 14 Cho hàm số f (x) Biết f (0)= 4 và f′
(x)= 2 sin2
x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2+ 15π
Câu 15 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 8
1
209
1
210.
Câu 16 Cho lăng trụ đứng ABC.A′B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′
BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′
B′C′
A V = 2a3
√ 3
Câu 17 ChoR 1x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= −1
x 2 B F′(x)= 1
x C F′(x)= 2
x 2 D F′(x)= ln x
Câu 18 NếuR2
0 f(x)dx= 4 thì R2
0
h1
2f(x) − 2idx bằng
Câu 19 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 20 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 21 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 22 Trong không gian Oxyz, cho đường thẳng d : x−1
2 = y−2
−1 = z +3
−2 Điểm nào dưới đây thuộc d?
A P(1; 2; 3) B M(2; −1; −2) C N(2; 1; 2) D Q(1; 2; −3).
Câu 23 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
Câu 24 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 25 Tiệm cận ngang của đồ thị hàm số y= 2x +1
3x−1 là đường thẳng có phương trình:
A y= 2
3 C y= −1
3 D y= −2
3
Câu 26 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 27 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x3− 3x − 5 B y= x −3
x −1. C y= x4− 3x2+ 2 D y= x2− 4x+ 1
Câu 28 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Trang 3Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 30 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1= (−1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n4 = (1; 1; −1) D.→−n3 = (1; 1; 1)
Câu 32 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 33 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 34 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Một đường thẳng B Đường tròn C Parabol D Hai đường thẳng.
Câu 35 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 1 B max |z|= 2 C max |z|= √2 D max |z|= 3
Câu 36 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1
2 ⇔ x= 9
2 ⇔ z= 9
2 −
9
2i|z+ 4i − 5|
A. 1
2
√ 5
13
2
Câu 37 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường tròn B Một Elip C Một đường thẳng D Một Parabol.
Câu 38 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 39 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol.
Câu 40 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 2√5 B max T = 3√2 C max T = 2√10 D max T = 3√5
Câu 41 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 42 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= √33 B |z|= √10 C |z|= 50 D |z|= 5√2
Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m
Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Trang 4Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R.
A m > −2 B −3 ≤ m ≤ 0 C −4 ≤ m ≤ −1 D m < 0.
Câu 46 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1)log4e. B y
′ = √ 1
x2− 1 ln 4
(x2− 1) ln 4. D y
2(x2− 1) ln 4.
Câu 47 Biết
π 2 R
0 sin 2xdx= ea Khi đó giá trị a là:
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 50 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Trang 5HẾT