1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (547)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

y= −1

2. C minR

R

y= 1

2.

Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M′(−2; 3; 1) B M′(2; 3; 1) C M′(−2; −3; −1) D M′(2; −3; −1)

Câu 3 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln(m+ 1

2m+ 2

m+ 2 ). C I = ln(

m+ 2 2m+ 2). D I = ln(

m+ 2

m+ 1).

Câu 4 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′

lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′

A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′

D′theo a

Câu 5 Cho lăng trụ đều ABC.A

B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 6 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:

A y= x

5 ln 5− 1+ 1

5 ln 5 −

1

ln 5.

C y= x

5 ln 5+ 1 − 1

5 ln 5 + 1

Câu 7 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

4πR3

Câu 8 Cho lăng trụ đều ABC.A

B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

5a

2a

a

√ 3a

2 .

Câu 9 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

−2 = z+ 2

1 và d2 :

x −4

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách

từ điểm M(1; 1; 1) đến (P) bằng

A. √3

2

3√10.

Câu 10 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 2x − 2

−2x+ 3

x+ 1.

Câu 11 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; −1) B.→−n = (1; −2; 3) C.→−n = (1; 2; 3) D.→−n = (1; 3; −2)

Trang 2

Câu 12 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

55.

Câu 14 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (2

3; −

4

3;

5

3). B (2 ; −3 ; 1). C (

10

2 ; −

4

3;

5

8

3; −

2

3;

7

3).

Câu 15 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 16 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 17 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 18 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 19 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 20 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −22016 B −21008+ 1 C −21008 D 21008

Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng

A z · z+ z + z + 1 B z+ z + 1 C z2+ 2z + 1 D |z|2+ 2|z| + 1

Câu 22 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 34 B |z|= 5

√ 34

√ 34

3 .

Câu 23 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 24 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 25 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 26 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = − 1

′ = 1

′ = ln3

x .

Câu 27 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 1

Trang 3

Câu 28 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 29 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 30 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 1

9

4

18

35.

Câu 31 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 32 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Câu 33 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 35 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Câu 36 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 10

√ 2

√ 2

√ 5

√ 6

2 .

Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 40 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Trang 4

Câu 41 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B. 5

2 < |z| < 4 C 3 < |z| < 5 D. 1

2 < |z| < 2

Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 43 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 44 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

√ 15

1

√ 5

3 .

Câu 46 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −4 ≤ m ≤ −1 B −3 ≤ m ≤ 0 C m > −2 D m < 0.

Câu 47 Tính đạo hàm của hàm số y= 5x +cos3x

C y′ = (1 − sin 3x)5x +cos3xln 5. D y′ = (1 − 3 sin 3x)5x +cos3xln 5.

Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3√ 5

a3√ 15

a3√ 15

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 14; 15)

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Trang 5

HẾT

Ngày đăng: 05/04/2023, 16:17

🧩 Sản phẩm bạn có thể quan tâm

w