1. Trang chủ
  2. » Tất cả

Đề kiểm tra thpt môn toán (705)

5 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 124,52 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A 4 3[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 4

Câu 2 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Câu 3 Cho lăng trụ đều ABC.A

B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 5 Cho lăng trụ đều ABC.A

B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

5a

2a

a

√ 3a

2 .

Câu 6 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 7 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường elip B Đường parabol C Đường hypebol D Đường tròn.

Câu 8 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 9 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A 5x5+ sin x + C B x5+ sin x + C C 5x5− sin x+ C D x5− sin x+ C

Câu 10 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 11 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 12 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính

e 2

R

1

f(ln x)

Câu 13 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x+ 1)2+ (y + 4)2+ (z − 2)2= √40 B (x − 1)2+ (y − 4)2+ (z + 2)2 = 10

C (x+ 1)2+ (y + 4)2+ (z − 2)2= 40 D (x − 1)2+ (y − 4)2+ (z + 2)2 = 40

Trang 2

Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; −1) B.→−n = (1; 3; −2) C.→−n = (1; −2; 3) D.→−n = (1; 2; 3)

Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 17 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 19 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 20 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z · z = a2− b2 B z+ z = 2bi C |z2|= |z|2 D z − z= 2a

Câu 21 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 23 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực không âm Câu 24 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −11

29

29

11

13.

Câu 25 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 26 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 27 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 28 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A N(2; 1; 2) B M(2; −1; −2) C P(1; 2; 3) D Q(1; 2; −3).

Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 30 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Trang 3

Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 32 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

3

√ 3

√ 2

2 a.

Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

2 + C

2 + C

Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 35 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 36 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 38 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

√ 2

1

2.

Câu 39 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

A. 1

3

Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 4√13 B T = 2

√ 85

√ 97

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

Trang 4

A 2 B.

√ 2

1

1

5.

Câu 43 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:

A I(−1; 2; −3); R = 3 B I(1; −2; 3); R = 3 C I(1; 2; 3); R= 3 D I(1; 2; −3); R= 3

Câu 44 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 2√5 B (x − 4)2+ (y + 8)2 = 20

C (x+ 4)2+ (y − 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 2√5

Câu 45 Với a là số thực dương tùy ý, log5(5a) bằng

Câu 46 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(2x)

1

4x

−1

2(x

1

2 D 3x(x2+ 1)

1

2

Câu 47 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

A. 1

−1

Câu 48 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 49 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 3

5 −

6

5−

27

5+ 27

5 + 6

5i.

Câu 50 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A (−1; −3; 1) B (1; −2; 0) C A(−1; 2; 0) D (3; −1; −1).

Trang 5

HẾT

Ngày đăng: 05/04/2023, 11:17