1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (705)

4 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nghiệp
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nghiệp
Định dạng
Số trang 4
Dung lượng 124,88 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

Câu 2 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

R

R

y= 1

y= −1

2.

Câu 3 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

A V = 10π

Câu 4 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A a−√3< b−√3 B ea > eb C. √5

a< √5

2> b√2

Câu 5 Kết quả nào đúng?

A.R sin2xcos x= sin3x

C.R sin2xcos x= −sin3x

Câu 6 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 1 B |→−u |= √3 C |→−u |= 3

D |→−u |= 9

Câu 7 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

4 −

ln 2

2 . B F(

π

4)= π

3 + ln 2

2 . C F(

π

4)= π

4 + ln 2

2 . D F(

π

4)= π

3 −

ln 2

2 .

Câu 8 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A log 1

a

x> log1

a

y B log x > log y C ln x > ln y D logax> logay

Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

A. a

√ 2

2 .

Câu 10 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 11 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′

BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

B′C′

A. a

3

a3√ 2

a3

a3√ 2

2 .

Trang 2

Câu 12 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 14 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 7; 3, 9)· B (3, 5; 3, 7)· C (3, 3; 3, 5)· D (3, 1; 3, 3)·.

Câu 15 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x +2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 16 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A N(1 ; 1 ; 7) B Q(4 ; 4 ; 2) C P(4 ; −1 ; 3) D M(0 ; 0 ; 2).

Câu 17 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

11

29

29

13.

Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 19 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z. C z là số thuần ảo. D z= z

Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng

A |z|2+ 2|z| + 1 B z · z+ z + z + 1 C z2+ 2z + 1 D z+ z + 1

Câu 21 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 22 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 23 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 24 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √13 B |z1+ z2|= √5 C |z1+ z2|= 5 D |z1+ z2|= 1

Câu 25 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 26 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x −3

x −1. B y= x3− 3x − 5 C y= x4− 3x2+ 2 D y= x2− 4x+ 1

Câu 27 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Trang 3

Câu 28 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1

2 Giá trị của u3bằng

1

7

2.

Câu 29 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 31 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

5

√ 2

Câu 32 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

1

Câu 33 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 34 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 35 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1 z2

+

z2 z1

A. √1

2

√ 2

√ 2

Câu 36 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1 B |w|min= 2 C |w|min = 1

2. D |w|min = 3

2.

Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là số thuần ảo.

Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

4;

5 4

!

2;

9 4

!

4

!

Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 41 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

2.

Trang 4

Câu 42 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 2

√ 3

2 .

Câu 43 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 44 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A [−3; 3] B (−∞; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3].

Câu 45 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 46 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 47 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 2√5 B (x − 4)2+ (y + 8)2 = 20

C (x+ 4)2+ (y − 8)2 = 2√5 D (x+ 4)2+ (y − 8)2 = 20

Câu 48 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; −3; 4) B.→−n = (−2; 3; 4) C.→−n = (2; 3; −4) D.→−n = (−2; 3; 1)

Câu 49 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A x − 2y − 2z − 4= 0 B 3x − 4y+ 6z + 34 = 0

Câu 50. R 6x5dxbằng

A. 1

6x

HẾT

Ngày đăng: 10/04/2023, 08:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN