Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A ad > 0 B ab < 0 C ac < 0 D bc > 0
Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 6; 0) B (0; 2; 0) C (0; −2; 0) D (−2; 0; 0).
Câu 3 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A ln x > ln y B log 1
a
x> log1
a
y C log x > log y D logax> logay
Câu 4 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 5 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5 −
1
ln 5.
C y= x
5 ln 5+ 1 − 1
5 ln 5 − 1+ 1
ln 5.
Câu 6 Bất đẳng thức nào sau đây là đúng?
A (√3 − 1)e < (√3 − 1)π B 3−e > 2−e
C (√3+ 1)π > (√3+ 1)e D 3π < 2π
Câu 7 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếux > 2 thìy < −15 B Nếu 0 < x < 1 thì y < −3.
C Nếu 0 < x < π thì y > 1 − 4π2 D Nếux= 1 thì y = −3
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(8;21
Câu 9 Biết
5
R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 10 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2+ mx − 1nằm bên phải trục tung
A m < 0 B m < 1
3. C 0 < m <
1
3. D Không tồn tại m.
Câu 11 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab)= ln a ln b B ln(ab2)= ln a + (ln b)2
C ln(ab2)= ln a + 2 ln b D ln(a
b)= ln a
ln b.
Câu 12 Tìm nghiệm của phương trình 2x = (√3)x
Trang 2Câu 13 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x.
A −1
1
2
3.
Câu 14 Tính nguyên hàmR cos 3xdx
A 3 sin 3x+ C B −3 sin 3x+ C C −1
3sin 3x+ C
Câu 15 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3. B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. D (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2 = 3
Câu 16 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vuông Tính thể tích của khối trụ
Câu 17 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 4√5 B |w|= √48 C |w|= 6√3 D |w|= √85
Câu 18 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z.
Câu 19 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là −3 và phần ảo là−2 B Phần thực là 3 và phần ảo là 2i.
C Phần thực là−3 và phần ảo là −2i D Phần thực là3 và phần ảo là 2.
Câu 20 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Không có số nào B Chỉ có số 1 C 0 và 1 D C.Truehỉ có số 0.
Câu 21 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 22 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009 B (1+ i)2018 = −21009i C (1+ i)2018 = −21009 D (1+ i)2018 = 21009i
Câu 23 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 24 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 26 Tập xác định của hàm số y= logπ(3x− 3) là:
Câu 27 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
Câu 28 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là
A. 2a
3√
3
a3√ 3
a3√ 3
3√
3
Trang 3Câu 29 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π (dm3) Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước Tính thể tích nước còn lại trong bình
A 54π(dm3) B 12π(dm3) C 24π(dm3) D 6π(dm3)
Câu 30 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:
Câu 31 Tính tích phân I =
e
R
1
lnnx
x dx, (n > 1)
A I = 1
1
Câu 32 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 4a
2b
4a2b
2a2b
2a2b
3√3π.
Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình
hành
A (−1; 1; 1) B (1; −1; 1) C (1; −2; −3) D (1; 1; 3).
Câu 34 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 10
√ 2
√ 2
√ 5
√ 6
2 .
Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 4 B |z|= 1
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
C a2+ b2+ c2− ab − bc − ca D a2+ b2+ c2+ ab + bc + ca
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 40 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
1
2.
Trang 4Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2= 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2√13 B T = 4√13 C T = 2
√ 85
√ 97
Câu 42 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B 2 < |z| < 5
1
2 < |z| < 3
5
2 < |z| < 7
2.
Câu 43 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 44 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 45 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 500π
√
3
400π√3
125π√3
250π√3
Câu 46 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
1
√ 5
√ 15
5 .
Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a√30
3a√6
a√15
Câu 48 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Câu 49 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = (1 − 3 sin 3x)5x +cos3xln 5.
Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Trang 5HẾT