Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng? A y = 3x + 1 x −[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
A y= 3x+ 1
Câu 2 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 3 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5−
1
5 ln 5 + 1
C y= x
5 ln 5+ 1 − 1
5 ln 5 − 1+ 1
ln 5.
Câu 4 Hàm số nào sau đây đồng biến trên R?
A y= √x2+ x + 1 − √x2− x+ 1 B y= x2
Câu 5 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3
Tìm F(π
4)
A F(π
4)= π
3 + ln 2
2 . B F(
π
4)= π
3 −
ln 2
2 . C F(
π
4)= π
4 −
ln 2
2 . D F(
π
4)= π
4 + ln 2
2 .
Câu 6 Bất đẳng thức nào sau đây là đúng?
A (√3+ 1)π > (√3+ 1)e B (√3 − 1)e < (√3 − 1)π
Câu 7 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A ln x > ln y B logax> logay C log x > log y D log 1
a
x> log1
a y
Câu 8 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= −1
2. B minR
R
y= 1
y= 0
Câu 9 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x + y + 2z = 0 B (P) : x − y + 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x − y − 2z = 0.
Câu 10 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 11 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
4.
Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; −1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(1; 1; 2).
Câu 13 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Trang 2Câu 14 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 15 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
3.
Câu 16 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 17 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 18 Với mọi số phức z, ta có |z+ 1|2bằng
A z · z+ z + z + 1 B z2+ 2z + 1 C |z|2+ 2|z| + 1 D z+ z + 1
Câu 19 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 20 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là −3 và phần ảo là−2 B Phần thực là−3 và phần ảo là −2i.
C Phần thực là 3 và phần ảo là 2i D Phần thực là3 và phần ảo là 2.
Câu 21 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 22 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực không âm Câu 24 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 25 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −11
29
11
29
13.
Câu 26 Cho hình chóp S ABCcó S A vuông góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d
BAC = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC
A V = 5
√
5
√ 5π
√ 5πa3
Câu 27 Họ nguyên hàm của hàm số f (x)= (2 ln x+ 3)3
A. (2 ln x+ 3)4
Câu 28 Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A y= x4− 2x2− 1 B y= 2x4+ 4x2+ 1 C y= −x4− 2x2− 1 D y= x4+ 2x2− 1
Câu 29 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là
A. 2
3x
3+ x4
3x
3+ x4
4 − 4x+ 4
Trang 3Câu 30 Lăng trụ ABC.ABC có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A lên (ABC)
là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′A′) là
A. 3a
√
13
3a√10
3a√13
a√3
2 .
Câu 31 Với giá trị nào của tham số m thì hàm số y = 2x − 3
x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1
4 :
Câu 32 Cho hình chóp tứ giác S ABCD có đáy là hình vuông cạnh bằng a√2, tam giác S AB vuông cân tại S và mặt phẳng (S AB) vuông góc với mặt phẳng đáy Khoảng cách từ A đến mặt phẳng (S CD) là
A. a
√
10
a√6
a√2
√ 2
Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:
Câu 34 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 1
2 < |z| < 3
2. B |z| <
1
3
2 ≤ |z| ≤ 2. D |z| > 2.
Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
C z là số thuần ảo D z là một số thực không dương.
Câu 37 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 38 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 40 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 2
√ 5
√ 2
3 .
Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Trang 4Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
√
√ 2
2 .
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
Câu 44 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 45 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 46 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
Câu 47 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −2x4+ 4x2 C y= x3− 3x2
D y= −x4+ 2x2+ 8
Câu 48 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 49 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRh + πR2 B St p = πRl + 2πR2 C St p = 2πRl + 2πR2 D St p = πRl + πR2
Câu 50 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Trang 5HẾT