1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (596)

5 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x − y + 2z + 5 =[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0).

Câu 2 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 3 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 4 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(6; 21; 21) B C(8;21

Câu 6 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?

Câu 7 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A. √5

a< √5

2 > b√2 C a−√3 < b−√3 D ea > eb

Câu 8 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

C Hàm số đồng biến trên R D Hàm số nghịch biến trên R.

Câu 9 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 10 Cho hàm số y =

x

3

− mx+ 5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 11 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 12 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 1 B y= −x4+ 1 C y= x4+ 2x2+ 1 D y= −x4+ 2x2+ 1

Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Trang 2

Câu 14 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi

K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

5

a√5

√ 15

Câu 15 Cho hình phẳng (H) giới hạn bởi các đường y= x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 8

3 .

Câu 16 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 17 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 18 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 21 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 22 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −11

11

29

29

13.

Câu 23 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2 z1

Câu 24 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

3 .

Câu 25 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A m ≥ 1 hoặc m ≤ 0 B 0 ≤ m ≤ 1 C m ≥ 0 hoặc m ≤ −1 D −1 ≤ m ≤ 0.

Câu 26 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục

bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được

A. 4a

2b

2a2b

4a2b

2a2b

3√2π.

Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân

giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau đây:

A (−2; 3; 5) B (4; −6; 8) C (1; −2; 7) D (−2; 2; 6).

Trang 3

Câu 28 Xác định tập tất cả các giá trị của tham số m để phương trình

2x3+ 3

2x

2− 3x − 1

2 =

m

2 − 1

có 4 nghiệm phân biệt

A S = (−2; −3

4) ∪ (

19

C S = (−2; −3

4) ∪ (

19

4) ∪ (

19

4 ; 6).

Câu 29 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)

Câu 30 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng

với lãi suất 3

A 43.091.358 đồng B 45.188.656 đồng C 48.621.980 đồng D 46.538667 đồng.

Câu 31 Tính tích phân I =

e R 1

lnnx

x dx, (n > 1)

A I = 1

1

n −1.

Câu 32 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)

A. 9

7

5

3

4.

Câu 33 Tập nghiệm của bất phương trình log4(3x

− 1).log 1

4

3x− 1

3

4 là:

Câu 34 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là số thuần ảo.

Câu 35 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 36 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

2

√ 3

Câu 37 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 39 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B 3 < |z| < 5 C. 5

2 < |z| < 4 D. 3

2 < |z| < 3

Trang 4

Câu 41 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 43 Cho bất phương trình 3

√ 2(x−1)+1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình đúng với mọi x ∈ (4;+∞)

B Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

C Bất phương trình vô nghiệm.

D Bất phương trình đúng với mọi x ∈ [ 1; 3].

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 14; 15) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 13; 16)

Câu 45 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 46 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 47 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 48 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRl + 2πR2 B St p = πRh + πR2 C St p = 2πRl + 2πR2 D St p = πRl + πR2

Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 1 hoặc m < −1

3 B m > 2 hoặc m < −1 C m > 1. D m < −2.

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= −1 + 2t

y= 2 + 3t

x= 1 − 2t

y= −2 + 3t

x= 1 + 2t

y= −2 + 3t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t .

Trang 5

HẾT

Ngày đăng: 04/04/2023, 14:29

TỪ KHÓA LIÊN QUAN

w