1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (549)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,64 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(6; 21; 21) B C(8;21

Câu 2 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 3 Hàm số nào sau đây đồng biến trên R?

Câu 4 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M

(−2; −3; −1) D M

(2; 3; 1)

Câu 6 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < 1 thì y < −3 B Nếu 0 < x < π thì y > 1 − 4π2

C Nếux > 2 thìy < −15 D Nếux= 1 thì y = −3

Câu 7 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?

Câu 8 Tính I =R1

0

3

√ 7x+ 1dx

A I = 21

28.

Câu 9 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1

3.

C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1

3. D (S ) : (x − 2)

2+ (y − 1)2+ (z + 1)2= 3

Câu 11 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. m

2− 3

m2− 12

m2− 12

4m2− 3

Câu 12 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã

cho có diện tích lớn nhất bằng?

A. 3

3

√ 3

2) C 3√3(m2) D 1 (m2)

Trang 2

Câu 13 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(3; 7; 4) B C(5; 9; 5) C C(1; 5; 3) D C(−3; 1; 1).

Câu 14 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi

K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

15

a√5

a√5

√ 15

Câu 15 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

2.

Câu 16 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y= x3+ x2+ mx − 1nằm bên phải trục tung

A Không tồn tại m B 0 < m < 1

3. C m <

1

Câu 17 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 19 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √85 B |w|= 4√5 C |w|= √48 D |w|= 6√3

Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng

Câu 21 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 22 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 23 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z. D z là số thuần ảo.

Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 26 Cho tam giác ABC vuông tại A, AB= a, BC = 2a Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục AB

3

Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính

đường tròn nội tiếp tam giác ABC bằng

Câu 28 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình

A (x − 1)2+ (y + 1)2+ (z + 2)2 = 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2= 6

C (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24 D (x+ 1)2+ (y − 1)2+ (z − 2)2= √6

Trang 3

Câu 29 Tìm tập hợp tất cả các giá trị của tham số m để hàm số y= x3+ (m − 2)x2− 3mx+ m có điểm cực đại có hoành độ nhỏ hơn 1

Câu 30 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục

bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được

A. 2a

2b

3

2b 3

√ 3π

2b 3

√ 2π

2b 3

√ 2π

Câu 31 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đó một

khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π (dm3) Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước Tính thể tích nước còn lại trong bình

A 12π(dm3) B 54π(dm3) C 6π(dm3) D 24π(dm3)

Câu 32 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC

Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)

A.

3

√ 5

√ 10

2

5.

Câu 33 Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vuông ABCD có hai cạnh

AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC không phải là đường sinh của hình trụ (T ) Tính cạnh của hình vuông này

√ 10

Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2

97

√ 85

Câu 35 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là một số thực không dương.

Câu 36 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 37 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 1

2 < |z| < 3

2. B |z| <

1

3

2 ≤ |z| ≤ 2. D |z| > 2.

Câu 38 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 39 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 2 C |w|min = 1 D |w|min = 3

2.

Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| ≤ 1 B |A| ≥ 1 C |A| < 1 D |A| > 1.

Trang 4

Câu 42 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 43 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

12.

Câu 44 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 15

πa2√ 17

Câu 45 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2 B y= −x4+ 2x2+ 8 C y= −2x4+ 4x2 D y= x3− 3x2

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1

Câu 47 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

A 9a3√

3

Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3√ 15

a3√ 5

a3√ 15

Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c

Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A. 1

√ 15

√ 5

√ 15

10 .

Trang 5

HẾT

Ngày đăng: 04/04/2023, 14:31

🧩 Sản phẩm bạn có thể quan tâm

w