1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (810)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 120,77 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho lăng trụ đều ABC.A

B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (0; 6; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 2; 0).

Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > e2 B m > 2 C m ≥ e−2 D m > 2e

Câu 4 Công thức nào sai?

Câu 5 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 6 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

Câu 7 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 8 Hàm số nào sau đây đồng biến trên R?

A y= √x2+ x + 1 − √x2− x+ 1 B y= x2

Câu 9 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − y − 2z = 0 B (P) : x − 2y − 2 = 0 C (P) : x + y + 2z = 0 D (P) : x − y + 2z = 0.

Câu 10 Tìm nghiệm của phương trình 2x = (√3)x

Câu 11 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= −x4+ 1 B y= x4+ 2x2+ 1 C y= x4+ 1 D y= −x4+ 2x2+ 1

Câu 12 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y= 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A − ln 2 −1

2. B ln 2+ 1

1

1

2.

Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 14 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 2

1

1

Trang 2

Câu 15 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 16 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(1; 5; 3) B C(3; 7; 4) C C(−3; 1; 1) D C(5; 9; 5).

Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5= 0 Bán kính R của (S) bằng bao nhiêu?

Câu 18 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động

Câu 19 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 4

Câu 20 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ≥ 0 B m ∈ (0; 2) C −1 < m < 7

2. D m ∈ (−1; 2).

Câu 21 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

C Hàm số nghịch biến trên R D Hàm số đồng biến trên R.

Câu 22 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 23 Kết quả nào đúng?

A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −sin3x

C.R sin2xcos x= −cos2x sin x + C D.R sin2xcos x= sin3x

Câu 24 Cho lăng trụ đều ABC.A

B′C′có đáy bằng a, AA′= 4√3a Thể tích khối lăng trụ đã cho là:

Câu 25 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= −1

2. B minR

R

R

y= 1

2.

Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : x −3

d2 : x= ty = −tz = 2 (t ∈ R) Đường thẳng đi qua điểm A(0; 1; 1), vuông góc với d1và cắt d2có phương trình là:

A. x −1

−3 = z −1

x

−1 = y −1

−3 = z −1

4 .

C. x

−1 = y −1

x

1 = y −1

−3 = z −1

4 .

Câu 27 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s) Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?

Câu 28 Cho hàm số f (x)= e

1

3x

3 −2x 2 +3x+1

Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)

B Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)

Trang 3

C Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞).

D Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)

Câu 29 Đồ thị của hàm số y= x −

x+ 2

x2− 4 có tất cả bao nhiêu tiệm cận?

Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình

A (x+ 1)2+ (y − 1)2+ (z − 2)2= 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = √6

C (x − 1)2+ (y + 1)2+ (z + 2)2= 6 D (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24

Câu 31 Cho

4 R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 32 Tứ diện OABC có OA = OB = OC = a và đôi một vuông góc Gọi M, N, P lần lượt là trung điểm AB, BC, CA Thể tích tứ diện OMNP là

A. a

3

a3

a3

a3

6.

Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:

Câu 34 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −2x4+ 4x2 B y= −x4+ 2x2+ 8 C y= −x4+ 2x2 D y= x3− 3x2

Câu 35 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

33π

32π

5 .

Câu 36 Tính đạo hàm của hàm số y= log4√x2− 1

A y′= √ 1

x2− 1 ln 4. B y

2(x2− 1) ln 4. C y

(x2− 1)log4e. D y

(x2− 1) ln 4.

Câu 37 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

A D= (1; +∞)

B D= (−∞; 0)

D D= (−∞; −1] ∪ (1; +∞)

Câu 38 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRh + πR2 B St p = πRl + 2πR2 C St p = 2πRl + 2πR2 D St p = πRl + πR2

Câu 39 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 23

27

25

29

4 .

Câu 40 Chọn mệnh đề đúng trong các mệnh đề sau:

C.R (2x+ 1)2dx = (2x+ 1)3

2 + C

Câu 41 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A = 2a Tính thể tích khối chóp S.ABCD

Trang 4

Câu 42 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 43 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

31π

32π

5 .

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 B (x − 1)2+ (y − 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1

Câu 45 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 46 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 47 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= x3− 3x2

B y= −x4+ 2x2+ 8 C y= −2x4+ 4x2 D y= −x4+ 2x2

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= 1 + 2t

y= −2 + 3t

z= 4 − 5t

x= 1 − 2t

y= −2 + 3t

z= 4 + 5t

x= −1 + 2t

y= 2 + 3t

z= −4 − 5t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t

Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A m < 0 B m > −2 C −4 ≤ m ≤ −1 D −3 ≤ m ≤ 0.

Câu 50 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2a +b+c. B P = 2abc C P= 26abc D P= 2a +2b+3c.

Trang 5

HẾT

Ngày đăng: 04/04/2023, 11:24

w