Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A loga(x − 2)2 =[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga(x − 2)2 = 2loga(x − 2) B loga2x= 1
2logax.
C logax2 = 2logax D alogax = x
Câu 2 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 0; 5) B (0; 5; 0) C (0; −5; 0) D (0; 1; 0).
Câu 3 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A a−√3< b−√3 B ea > eb C. √5
a< √5
√
2> b√2
Câu 4 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 5 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A πRl B 2π√l2− R2 C 2πRl D π√l2− R2
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(8;21
Câu 7 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
5a
√ 3a
2a
√
a
√
5.
Câu 8 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 1 B |→−u |= 3
C |→−u |= √3 D |→−u |= 9
Câu 9 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 10 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
4).
Câu 11 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
Câu 12 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√
ba3
A. m
2− 12
4m2− 3
m2− 3
m2− 12
Câu 13 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
6.
Trang 2Câu 14 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. 2π
√
2.a2
√
π√2.a2
Câu 15 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 16 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [7
4; 2]S[22;+∞) B (7
4;+∞)
C [22;+∞) D (7
4; 2]S[22;+∞)
Câu 17 Cho lăng trụ đều ABC.A′
B′C′có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′và BC′
A.
√
5a
√ 3a
a
√
2a
√
5.
Câu 18 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5 − 1+ 1
5 ln 5 + 1
C y= x
5 ln 5 −
1
5 ln 5 + 1 − 1
ln 5.
Câu 19 Cho hình phẳng (D) giới hạn bởi các đường y= √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành
3.
Câu 20 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. 4
√
3π
√
√ 3π
Câu 21 Cho hình chóp đều S ABCD có đáy ABCD là hình vuông cạnh 2a, đường cao của hình chóp
bằng a Tính góc giữa hai mặt phẳng (S AC) và (S AB)
Câu 22 Cho số thực dươngm Tính I =
m R 0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 1
m+ 2
2m+ 2
m+ 2 2m+ 2).
Câu 23 Cho lăng trụ đều ABC.A′B′C′có đáy bằng a, AA′= 4√3a Thể tích khối lăng trụ đã cho là:
Câu 24 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 3
Câu 25 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R?
A m > 2 B m ≥ e−2 C m > e2 D m > 2e
Câu 26 Lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên (ABC)
là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′A′) là
A. 3a
√
10
3a√13
3a√13
a√3
2 .
Trang 3Câu 27 Cho hàm số y= 5x −3x Tính y′
A y′= (x2− 3x)5x2−3xln 5 B y′ = (2x − 3)5x2−3x
C y′= (2x − 3)5x 2 −3xln 5 D y′ = 5x 2 −3xln 5
Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:
Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình
hành
A (−1; 1; 1) B (1; −2; −3) C (1; 1; 3) D (1; −1; 1).
Câu 30 Họ nguyên hàm của hàm số y= (x − 1)ex là:
A (x − 1)ex+ C B xex−1+ C C (x − 2)ex+ C D xex+ C
Câu 31 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A 48.621.980 đồng B 45.188.656 đồng C 46.538667 đồng D 43.091.358 đồng.
Câu 32 Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y= x2+ 2x
x −1 là:
Câu 33 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R
√ 3
2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1 Tính tỉ số h1
h
A. π − √3
2π − √3
2π − 3√3
√ 3
4 .
Câu 34 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
31π
33π
5 .
Câu 35 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= x3− 3x2
C y= −x4+ 2x2+ 8 D y= −2x4+ 4x2
Câu 36 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = 2πRl + 2πR2 B St p = πRl + πR2 C St p = πRl + 2πR2 D St p = πRh + πR2
Câu 37 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 38 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 − 3t
x= 1 + 2t
y= −2 + 3t
x= −1 + 2t
y= 2 + 3t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t .
Trang 4Câu 40 Cho bất phương trình 3 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng.
A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B Bất phương trình đúng với mọi x ∈ [ 1; 3].
C Bất phương trình vô nghiệm.
D Bất phương trình đúng với mọi x ∈ (4;+∞)
Câu 41 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 42 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1) ln 4. B y
(x2− 1)log4e. C y
2(x2− 1) ln 4. D y
′ = √ 1
x2− 1 ln 4.
Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3
√ 15
a3
√ 15
a3
√ 5
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 47 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R e2xdx=e2x
dx = (2x+ 1)3
Câu 49 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1)log4e. B y
2(x2− 1) ln 4. C y
′ = √ 1
x2− 1 ln 4. D y
(x2− 1) ln 4.
Câu 50 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
32π
31π
5 .
Trang 5HẾT