1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (810)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,24 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc

tơ pháp tuyến của (P) là

A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2).

Câu 2 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(6; 21; 21) B C(8;21

Câu 4 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 5 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A ac < 0 B ab < 0 C ad > 0 D bc > 0

Câu 6 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếux= 1 thì y = −3 B Nếu 0 < x < π thì y > 1 − 4π2

C Nếux > 2 thìy < −15 D Nếu 0 < x < 1 thì y < −3.

Câu 7 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường tròn B Đường hypebol C Đường elip D Đường parabol.

Câu 8 Tính I =R1

0

3

√ 7x+ 1dx

A I = 60

8 .

Câu 9 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 10 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

9.

Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 3

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

Câu 12 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A. π√3.a2

2π√2.a2

π√2.a2

√ 3.a2

Câu 13 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Trang 2

Câu 14 Cho hàm số y =

x

3

− mx+ 5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 15 Biết

5 R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 16 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 17 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 4√5 B |w|= √48 C |w|= √85 D |w|= 6√3

Câu 18 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 19 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 20 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z − z = 2a B z+ z = 2bi C |z2|= |z|2 D z · z= a2− b2

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực dương.

Câu 22 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √5 B |z1+ z2|= √13 C |z1+ z2|= 1 D |z1+ z2|= 5

Câu 23 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A m ≥ 0 hoặc m ≤ −1 B 0 ≤ m ≤ 1 C m ≥ 1 hoặc m ≤ 0 D −1 ≤ m ≤ 0.

Câu 24 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 25 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 26 Cho log2b= 3, log2c= −4 Hãy tính log2(b2c)

Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình

A (x+ 1)2+ (y − 1)2+ (z − 2)2 = 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2= 24

C (x − 1)2+ (y + 1)2+ (z + 2)2 = 6 D (x+ 1)2+ (y − 1)2+ (z − 2)2= √6

Câu 28 Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA= BC = a, S A = a và vuông góc với mặt phẳng đáy Tính côsin góc giữa hai mặt phẳng (SAC) và (SBC) bằng?

A.

2

√ 3

√ 2

1

2.

Câu 29 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

Trang 3

Câu 30 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A logaxcó nghĩa với ∀x ∈ R B loga1= a và logaa= 0

C logaxn = log

a

1 n

x, (x > 0, n , 0) D loga(xy)= logax.logay

Câu 31 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y= 1

3x

3− (m − 2)x2+ (m − 2)x +1

3m

2có hai điểm cực trị nằm về phía bên phải trục tung?

A m < 2 B m > 2 C m > 3 D m > 3 hoặc m < 2 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:

Câu 33 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

C Phần thực của z là số âm D z là một số thực không dương.

Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 37 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1 B |z|= 1

Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 39 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B. 5

2 < |z| < 4 C 3 < |z| < 5 D. 1

2 < |z| < 2

Câu 40 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Trang 4

Câu 42 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.

C y= 4x+ 1

Câu 46 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −2x4+ 4x2 B y= −x4+ 2x2+ 8 C y= x3− 3x2

D y= −x4+ 2x2

Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 48 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 49 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√2

5a√2

5a√3

Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Trang 5

HẾT

Ngày đăng: 04/04/2023, 14:25