1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (548)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 121,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y = log5x tại điểm có hoành độ[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 6 trang)

Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:

A y= x

5 ln 5−

1

5 ln 5 − 1+ 1

ln 5.

C y= x

5 ln 5+ 1 − 1

5 ln 5 + 1

Câu 2 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường parabol B Đường elip C Đường hypebol D Đường tròn.

Câu 3 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 9 B |→−u |= 1 C |→−u |= 3

D |→−u |= √3

Câu 4 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 5 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 6 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

5a

√ 3a

2a

a

5.

Câu 7 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

A y= x2− 2x+ 2 B y= −x4+ 3x2− 2

Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m ≥ e−2 B m > e2 C m > 2 D m > 2e

Câu 9 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

B Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 11 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; −3) B Hàm số nghịch biến trên khoảng (−3; 1).

C Hàm số đồng biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (1;+∞)

Trang 2

Câu 12 Cho hàm số f (x) thỏa mãn f′′

(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −3 B f (−1)= 3 C f (−1)= −1 D f (−1)= −5

Câu 13 Tìm nghiệm của phương trình 2x = (√3)x

Câu 14 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông

với cạnh huyền bằng 2a Tính thể tích của khối nón

A. π√2.a3

π.a3

4π√2.a3

2π.a3

Câu 15 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A π√3.a2 B. π√3.a2

π√2.a2

2π√2.a2

Câu 16 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

A.R f(2x − 1)dx = 1

C.R f(2x − 1)dx = 2F(2x − 1) + C D.R f(2x − 1)dx= F(2x − 1) + C

Câu 17 Cho hình chóp đều S ABCD có đáy ABCD là hình vuông cạnh 2a, đường cao của hình chóp

bằng a Tính góc giữa hai mặt phẳng (S AC) và (S AB)

Câu 18 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

3.

Câu 19 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0).

Câu 20 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động

Câu 21 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M′(−2; −3; −1) B M′(2; 3; 1) C M′(−2; 3; 1) D M′(2; −3; −1)

Câu 22 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

Câu 23 Bất đẳng thức nào sau đây là đúng?

C (√3+ 1)π > (√3+ 1)e D (√3 − 1)e < (√3 − 1)π

Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (0; −2; 0) B (0; 2; 0) C (−2; 0; 0) D (0; 6; 0).

Câu 25 Công thức nào sai?

Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : x −3

d2 : x= ty = −tz = 2 (t ∈ R) Đường thẳng đi qua điểm A(0; 1; 1), vuông góc với d1và cắt d2có phương trình là:

Trang 3

A. x

1 = y −1

−3 = z −1

x

−1 = y −1

4 .

C. x

−1 = y −1

−3 = z −1

x −1

−3 = z −1

4 .

Câu 27 Đồ thị của hàm số y= x −

x+ 2

x2− 4 có tất cả bao nhiêu tiệm cận?

Câu 28 Tập xác định của hàm số y= logπ(3x− 3) là:

Câu 29 Họ nguyên hàm của hàm số f (x)= (2 ln x+ 3)3

A. (2 ln x+ 3)4

Câu 30 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a

2√3

b

c ) bằng

1

Câu 31 Cho

4

R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 32 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:

Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là:

Câu 34 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 3mn+ n + 4

C log22250= 2mn+ n + 3

Câu 35 Cho bất phương trình 3

A Bất phương trình đúng với mọi x ∈ [ 1; 3].

B Bất phương trình vô nghiệm.

C Bất phương trình đúng với mọi x ∈ (4;+∞)

D Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

Câu 36 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 37 Tính đạo hàm của hàm số y= log4

x2− 1

A y′= x

2(x2− 1) ln 4. B y

(x2− 1)log4e. C y

x2− 1 ln 4

(x2− 1) ln 4.

Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Trang 4

Câu 39 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 25

29

27

23

4 .

Câu 40 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

5ln 2+ 6π

5 . B ln 2+ 6π

1

4ln 2+ 3π

2 .

Câu 41 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 42 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − 3 sin 3x)5x +cos3xln 5. B y′ = (1 + 3 sin 3x)5x +cos3xln 5

C y′ = (1 − sin 3x)5x +cos3xln 5 D y′ = 5x +cos3xln 5

Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

15

a3√ 15

a3√ 5

a3√ 15

Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 45 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 46 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

6.

Câu 47 Tính đạo hàm của hàm số y= 5x +cos3x

C y′ = (1 − sin 3x)5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5.

Câu 48 Cho hình lăng trụ đứng ABCD.A

B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

3

√ 3

√ 5

1

2.

Câu 49 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

32π

31π

5 .

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 7 = 0 B 2x+ y − 4z + 1 = 0

C 2x+ y − 4z + 5 = 0 D −2x − y+ 4z − 8 = 0

Trang 5

HẾT

Ngày đăng: 04/04/2023, 11:15

🧩 Sản phẩm bạn có thể quan tâm

w