Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 1 B 1 2 C 2 D −1[.]
Trang 1Tài liệu Free pdf LATEX
(Đề thi có 4 trang)
BÀI TẬP ÔN TẬP MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 2. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 3. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 4. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2, phần ảo là 1 −
√
√
2, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 5. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (−∞; 1) C. D = (1; +∞) D. D = R
Câu 6. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 1
0 = 1
2x ln x. D y
0 = 2x ln 2
Câu 7. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 8. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→af(x)= f (a)
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
Câu 9. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 10. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 11. Xác định phần ảo của số phức z= (√2+ 3i)2
Câu 12. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
8.
Câu 13. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = 3a3√
3 C V = a3
√ 3
2 . D V = 6a3
Trang 2Câu 14. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 15. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= 1
e, m = 0 C M = e, m = 1
e. D M = e, m = 1
Câu 16. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 17. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (2; 2; −1) B ~u= (2; 1; 6) C ~u= (1; 0; 2) D ~u= (3; 4; −4)
Câu 18. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Hai khối chóp tam giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 19. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
1
Câu 20. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 21. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = S h B V = 1
2S h. C V = 1
3S h. D V = 3S h
Câu 22. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 4 lần B Tăng gấp 6 lần C Tăng gấp 8 lần D Tăng gấp đôi.
Câu 23. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 24. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 25. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
B.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Trang 3
Câu 26. [3] Cho hàm số f (x)= 4
4x+ 2 Tính tổng T = f
1
2017 + f 2
2017 + · · · + f 2016
2017
2017.
Câu 27. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 6
Câu 28. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 29. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 30. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
a√38
3a
√ 58
3a√38
29 .
Câu 31. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 32. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 33. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = 4 + 2
e. C T = e + 1 D T = e + 3
Câu 34. Bát diện đều thuộc loại
Câu 35 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C.
Z
f(x)dx
!0
= f (x)
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 36. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
1
1
e2
Câu 37. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 38. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Trang 4Câu 39. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 40 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 41. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3
− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3, m = 4 B −3 ≤ m ≤ 4 C m= 4 D m= −3
Câu 42. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 43. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x +
1
x. C y= x4− 2x+ 1 D y= x3− 3x
Câu 44. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
2 .
Câu 45. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x − 3)2+ (y + 1)2+ (z + 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
Câu 46. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 47. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
8
1
1
3.
Câu 48. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
2a3√ 6
a3√ 6
12 .
Câu 49 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim √1
n = 0
C lim 1
nk = 0 với k > 1 D lim qn= 1 với |q| > 1
Trang 5Câu 50. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
HẾT
Trang 6-ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1