Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A 1 B −1 C 0 D 2 Câu 2 Cho hàm số y = f (x) liên tục trên khoảng[.]
Trang 1Free LATEX
(Đề thi có 5 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 2. Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 3. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
4.
Câu 4. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 5. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 6. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
3.
Câu 7. [1] Tính lim 1 − 2n
3n+ 1 bằng?
A −2
2
1
Câu 8. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞
C f (x) có giới hạn hữu hạn khi x → a D lim
x→a + f(x)= lim
x→a − f(x)= a
Câu 9. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 10. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 11. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
3
9
Câu 12. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 13. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Trang 2Câu 14. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 15. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 16. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 9
√
11+ 19
9 . C Pmin = 9
√
11 − 19
9 . D Pmin= 2
√
11 − 3
Câu 18. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 19. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey
− 1
Câu 20. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 21. Tính lim 2n
2− 1 3n6+ n4
Câu 22. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 23. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 24. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 1
3.
Câu 25. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
3
Câu 26. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Trang 3Câu 27. Dãy số nào sau đây có giới hạn khác 0?
A. √1
sin n
1
n+ 1
n .
Câu 28. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2+ n + 1
(n+ 1)2 C un = n2− 2
5n − 3n2 D un = n2− 3n
n2
Câu 29. Tính lim n −1
n2+ 2
Câu 30. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 31. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
2 .
Câu 32. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
√
√ 3
a√3
2 .
Câu 33. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
2a√57
√
√ 57
17 .
Câu 34. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a√2
2a
a
3.
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a√2
√
√ 2
Câu 36. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
a√57
a√57
√ 57
Câu 37. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
a
a√3
2 .
Câu 38. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
a√38
3a√38
3a√58
29 .
Trang 4Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. √ ab
a2+ b2 D. ab
a2+ b2
Câu 40. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√3
a√6
3 .
Câu 41. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D Cả ba câu trên đều sai.
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 43 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
Câu 44. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều sai D Cả hai đều đúng.
Câu 45. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ (a; b), ta có f0(x)= F(x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 46. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
Trang 5A Câu (III) sai B Không có câu nào
sai
C Câu (I) sai D Câu (II) sai.
Câu 47 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 48. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên đúng B Cả hai câu trên sai C Chỉ có (II) đúng D Chỉ có (I) đúng.
Câu 49 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 50 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z k f(x)dx= kZ f(x)dx, k là hằng số
HẾT
Trang 6-ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1