Lignin depolymerisation produces a large variety of low molecular weight phenolic compounds that can be upgraded to value-added chemicals. Detailed analysis of these complex depolymerisation mixtures is, however, hampered by the lack of resolving power oftraditional analysis techniques.
Trang 1jou rn al h om ep a g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Mingzhe Sun, Margareta Sandahl, Charlotta Turner∗
Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O Box 124, SE-22100 Lund, Sweden
Article history:
Received 14 November 2017
Received in revised form 29 January 2018
Accepted 5 February 2018
Available online 6 February 2018
Keywords:
Lignin
Phenolic compound
Supercritical fluid chromatography
Trapping capacity
Two-dimensional chromatography
Lignindepolymerisationproducesalargevarietyoflowmolecularweightphenoliccompoundsthatcan
beupgradedtovalue-addedchemicals.Detailedanalysisofthesecomplexdepolymerisationmixturesis, however,hamperedbythelackofresolvingpoweroftraditionalanalysistechniques.Inthisstudy,anovel onlinecomprehensivetwo-dimensionalreversed-phaseliquidchromatography(RPLC)×supercritical fluidchromatography(SFC)methodwithtrappingcolumninterfacewasdevelopedfortheseparation
ofphenoliccompoundsindepolymerisedligninsamples.Thetrappingcapacitiesofdifferenttrapping columnswereevaluated.Theinfluenceoflargevolumewater-containinginjectiononSFCperformance wasstudied.Therelationbetweenpeakcapacityandfirstdimensionflowrateandgradientwas inves-tigated.Theoptimized methodwasappliedfortheanalysisofadepolymerisedligninsample.The RPLC×SFCsystemexhibitedhighdegreeoforthogonality.Comparedwithtraditionalloopbased inter-face,trappingcolumninterfacecansignificantlyshortentheanalysistimeandofferhigherdetectability, withthedisadvantageofmoresevereundersamplinginthefirstdimension
©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
Biomass holds potential to partly replace petroleum as a
rawmaterialfor productionoffuels andvaluable fineand bulk
chemicals [1 Lignin is a naturally occurring polymer made
up from phenyl-propenoid units, decorated by hydroxy- and
methoxy-groups.Theseareconnectedthroughradical
polymerisa-tionmechanisms,resultinginseveraltypesofbondsbetweenthe
constituentbuildingblocks.Terrestrialbiomassconsistsprimarily
ofthemacromoleculeslignin,celluloseandhemicellulose.Lignin
couldbeanimportantsourcefortheproductionofaromatic
chemi-calsifwellharnessed[2 Oneofthekeystepsofconversionoflignin
tovalue-addedchemicalsisthedepolymerisation−byselective
bondcleavage–ofligninintolowmolecularweightphenolic
com-pounds,whichinturncanbeusedforchemicalproduction.Many
techniqueshavebeendevelopedandarecontinuouslyimproved
forthepurposeofdepolymerisation[3 Duetothestructural
com-plexityof lignin and thelarge variance in themonomeric unit
compositionofdifferentkindsoflignin,thedepolymerisation
prod-uctsareusuallyverycomplexmixturesofaliphaticandphenolic
∗ Corresponding author.
E-mail address: charlotta.turner@chem.lu.se (C Turner).
compounds,thecompositionsofwhichvarygreatlydependingon thelignintypeanddepolymerisationmethodapplied[3
Gaschromatography coupledwithmassspectrometryis the mostwidely adoptedmethodfor theanalysisof lignin depoly-merisationproducts[4 However,thistechniquerequiresarather complicatedsamplepreparation,usuallyincludingextractionand derivatisation,whichmayhavepreferencetowardscertainclasses
ofcompoundsifnotcarefullyperformed.Also,therelativelylow selectivityhinderstheusageofthistechnique,ifprofilingallmajor componentsistheaiminsteadofanalysisofonlyafewselected compounds.High-performanceliquidchromatography(HPLC)or ultrahighperformanceliquidchromatography(UHPLC)havealso beenusedintheanalysisoflignin-derivedcompounds[5,6 How-ever, these techniques also lack the separation power to fully resolveallmajorcomponentsforprofilingstudy
Multidimensionalchromatographyhasbeenwidelyappliedin variousfieldsasitofferstremendouslyimprovedresolvingpower comparedwiththeirone-dimensionalchromatography counter-parts Lignin pyrolysis bio-oil analysis by two-dimensional gas chromatography(2DGC)hasbeenreportedinrecentyears[7,8
As a complementary technique to 2DGC, two-dimensional liq-uid chromatography (2DLC) also holds a large potentialin the analysis of complex samples like lignin depolymerization mix-tures.Itcanovercomethedisadvantageof2DGCintheanalysis
https://doi.org/10.1016/j.chroma.2018.02.008
0021-9673/© 2018 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
Trang 2IngeneralSFCdisplaysaseparationmechanismresemblingthatof
NPLC[14].However,theselectivitycanbetunedinawiderrange
asbothpolarandnon-polarcolumnscanbeusedandmobilephase
temperatureandpressureplayimportantroles[15,16].The
poten-tialofSFCasthefirstdimensioninanonlineSFC×RPLCsystem
hasbeendemonstratedbyFrancoisandco-workers[17–19].To
betterharnessthehighefficiencyandfastseparationofSFC,efforts
havealsobeenmadetouseonlinemultipleheart-cuttingLC-SFC,
inparticularforpharmaceuticalachiral-chiralanalysis[20].Online
comprehensiveRPLC×SFCwithtraditionalcollectionloopsasthe
interfacehasalsobeeninvestigatedfortheanalysisoftraditional
Chinesemedicine and processed biomass oil [21,22] However,
compared withRPLC usedas seconddimensionin a 2D online
LC×LCsystem,SFCimposesstricterlimitationontheamountof
eluent transferredtothe seconddimensionin a 2D RPLC×SFC
design.Transfervolumeswithinthenormalrangeofa2DLC×LC
systemcancausesignificantpeakbroadeningandmisshaping,as
wellaspressurespikesatthebeginningofaseconddimensionrun
andpressurebuild-upwithcontinuous2DrunsinaRPLC×SFC
sys-tem[21].Consequently,averylowflowrate(<0.02mL/min)needs
tobeusedinthefirstdimensionLCwithtraditionalloop
collec-tionintheinterface,consideringthefeasiblemodulationlength
Alowfirstdimensionflowrateleadstorelativelylonganalysis
timeandhighdilutionfactor.Onewaytoaddressthisissueisto
introduceananalyteretentionandconcentrationstepbetweenthe
twodimensionalseparations.Theuseoftrappingcolumnsinthe
interfaceof 2DLCsystems hasbeenreportedinrecentyears by
severalauthors[18,23,24],andverywellsummarisedasa
solu-tionforbothcircumventingsolventincompatibilityandfocusing
thetransferredfractionintworeviews[25,26].Thisapproachdoes
notonlyincreasethesignaltonoiseratioasanalytesinthefirst
dimensioneluentsareconcentratedintonarrowbands,butalso
allowshigherflowratetobeusedinthefirstdimension
How-ever,thoroughevaluation and comparisonof differenttrapping
columnsbeforemethoddevelopmentandtheinvestigationof
trap-pingcolumnassistedmodulationonmethodrepeatabilitywerenot
performedinanyofthepublishedstudies.Also,two-dimensional
liquidchromatographyhastoourknowledgeneverbeenapplied
fortheanalysisofdepolymerisedligninsamples
Inthepresentstudy,acomprehensive2DRPLC×SFCmethod
wasdeveloped fortheseparation ofsmallphenolic compounds
indepolymerisedligninsamples.Differenttrappingcolumnswere
evaluatedandcomparedwithcollectionloopsastheinterface.The
effectof thelargevolumewater-richfirst dimensioneluenton
theseconddimensionseparationwasstudied,andtheadvantages
anddisadvantagesofreplacingthecollectionloopswithtrapping
kindlyprovidedbyAssociateProfessorJosephS.M.Samecfrom StockholmUniversity
2.2 Apparatus Theexperimentswereconductedonahome-built comprehen-sive2DRPLC×SFCsystemconsistingofaSFCcontrollingmodule (G4301A,AgilentTechnologies), twobinarypumps (G4302Afor SFC, G4220A for LC, Agilent Technologies), two diode array detectors (G1315C for SFC, G4212B for LC, Agilent Technolo-gies),anautosampler(G4303A,AgilentTechnologies),adegasser (G4225A, Agilent Technologies), a thermostated column com-partment (G1316C, Agilent Technologies) and a flexible cube module (G4227, Agilent Technologies) A 2-position/4-port-duo valve(5067–4214,AgilentTechnologies) iscontrolledbyoneof thetwodrivesinsidetheflexiblecubemodule.Theschemeofthe 2DRPLC×SFCsystemisshowninFig.1.Thesystemwascontrolled
byanAgilentOpenlabCDSChemstationC.01.07software.Allthe onedimensiondatawereevaluatedwithAgilentChemstation soft-ware.Allthe2DdatawereprocessedusingGCImagesoftware(GC Image,Lincoln,NE,USA)
2.3 Trappingcolumnperformanceevaluation 2.3.1 Trappingcapacity
Threetrappingcolumnsweretested:AgilentEclipsePlusC18, 2.1*5mm, 1.8m (EC-C18), Agilent Eclipse Plus phenyl-hexyl, 2.1*5mm, 1.8m (EC-PH) and Waters VanGuard Torus Diol, 2.1*5mm,1.7m(VG-Diol).Notemperaturecontrolwasapplied
onthetrappingcolumns.Theseparationcolumnusedinthefirst dimensionRPLCwasanAgilentZorbaxEclipsePlusC18column (2.1*100mm,1.8m).Fortheevaluationofthethreedifferent trap-pingcolumns,threeflowrates0.03,0.05and0.08mL/minwere appliedinthefirstdimension.ThemobilephaseconsistedofH2O (A)andacetonitrile(ACN)(B)inagradientthatwassettostart from10%(vol.)ofBto50%(vol.)ofBindifferentlengthsoftime dependingontheflowrate.Forallexperimentsinthissection,the firstdimensionLCcolumntemperaturewassetto50◦C.A stan-dardmixturecomposedof4-hydroxybenzoicacid,acetosyringone andveratraldehyde(all200mg/L)dissolvedin9:1water:ACN (vol-umetricratio)wasusedandthefirstdimensioninjectionvolume was5L
AWatersTorusDiol(3.0*50mm,1.7m)columnwasusedin theseconddimensionSFCseparation.Thecolumntemperaturewas setat50◦Candthebackpressureregulator(BPR)at130bar.The flowratewas1.5mL/min,themobilephaseconsistedofCO2 (A) andacetonitrile(B)andthegradientwassettostartfrom3%(vol.)
ofBto30%(vol.)ofBin2.0min
Trang 3Fig 1.Scheme of 2D RPLC × SFC system A: the eluent from the first dimension is being collected by trapping column A and the content in trapping column B is being flushed into the second dimension column for analysis (back-flush) B: vice versa.
Oneofthetrappingcolumnsinstalledintheinterfacing
switch-ingvalvewasreplacedwithoneshorttubingconnectingtheLCflow
pathwhennocompoundpeakwaseluting.Thetrappingcolumn
wasswitchedtotheLCflowpathtocollecteluentsofinterest
Dif-ferentvolumesofthefirstdimensioneluentacrossthepeakapexes
flowthroughthetrappingcolumnandthentransferredtothe
sec-onddimensionfor analysisby settingdifferentvalve switching
times(Fig.2)
2.3.2 Theinfluenceofsamplematrixontrappingcapacity
Agilent EC-PH 2.1*5mm, 1.8m trapping column was used
forevaluationoftheinfluenceofsamplematrixonthetrapping
capacity The chromatographic conditions were kept the same
as described in the previous section, except that 0.05mL/min
was used as the 1st dimension flow rate For the assessment
oftheimpactof samplematrix,thesame depolymerisedlignin
matrix wasspiked with4-hydroxybenzoic acid, acetosyringone
andveratraldehydeofdifferentconcentrations.Standardmixtures
composed of 4-hydroxybenzoic acid, acetosyringone and
vera-traldehydeofdifferentconcentrationsdissolvedin9:1water:ACN
(volumetricratio)werealsousedforcomparison
2.3.3 Repeatabilitytest
Thesamemixtureusedintheprevioussectionwasusedfor
repeatability tests,the injection volume was5L The column
usedinthefirstdimensionwasanAgilentZorbaxEclipsePlusC18
column(2.1*100mm,1.8m).0.05mL/minwasappliedasflow
rateinthefirstdimension.The columntemperaturewassetto
50◦C.ThemobilephaseconsistedofH2O(A)andacetonitrile(B)
andthegradientwassettostartingfrom10%(vol.)ofBto70%
(vol.)ofBin45min.Theseconddimensionconditionswerethe
sameasdescribedintheprevioussection.OneAgilentEclipsePlus
phenyl-hexyl,2.1*5mm,1.8mtrappingcolumnwasinstalledin
theinterfacewithashorttubinginstalledontheotherpositionof
theinterfaceconnectingtheLCflowpathwhennocompoundpeak
waseluting.ThetrappingcolumnwasswitchedtotheLCflowpath
tocollect0.8minofeluentacrosstheanalytepeaks,andthenitwas switchedbacktotheSFCflowpathforanalysisoftheanalytes col-lected.Therepeatabilitytestsweredoneby6successiveinjections
ofthemixtureinonedayandinjectionsofthesamemixturein3 non-consecutivedays
2.4 SFCinjectionvolumestudy
One-dimensionstand-aloneSFCwasusedinthissection Dif-ferentvolumes(1–10L)ofaveratraldehyde(200mg/L)solution dissolvedindifferentcompositionsofacetonitrile:water(9:1,1:1, 1:9,allvolumetricratios)wereinjected.Theseparationcolumn usedwasaWatersUPC2TorusDiol(3.0*50mm,1.7m).The col-umntemperaturewassetto 50◦C and theBPRat 130bar.The mobilephaseconsistedofCO2(A)andacetonitrile(B)andthe gra-dientwassettostartfrom10%(vol.)ofBto35%(vol.)ofBin1min andtheflowratewassetat3.0mL/min
2.5 FirstdimensionRPLCpeakcapacitystudy The40ligninmodelcompoundsstandardsmixturewasusedfor thepeakcapacitystudyofthefirstdimensionRPLC.Thecolumn usedinthefirstdimensionwasanAgilentZorbaxEclipsePlusC18 column(2.1*100mm,1.8m).ThemobilephaseconsistedofH2O (A)andacetonitrile(ACN)(B).Thestudyconsistsoftwoparts:linear gradientsfrom10 to70%Batdifferentgradienttime/voidtime ratios(tg/t0),usingaflowrate0.05mL/min;andlineargradients from10to70%Bwithaconstanttg/t0 of12wereappliedwith variedflowrates
2.6 SeconddimensionSFCcolumnselection The 40 standard mixture was used for column screen-ing Four columns were screened for the second dimension
Trang 4Fig 2.Chromatogram showing the collection time of different volumes of eluent across the peak apex Analyte: acetosyringone (dissolved in 90:10 water:ACN, 200 mg/L).
SFC separation: Waters UPC2 Torus 2-PIC (2-Picolylamine,
3.0*50mm, 1.7m); Waters UPC2 Torus Diol (High
den-sity diol, 3.0*50mm, 1.7m); Waters UPC2 Torus 1-AA
(1-Aminoanthracene,3.0*50mm,1.7m);WatersUPC2BEH(Silica,
3.0*50mm,1.7m).Thecolumntemperaturewassetto50◦Cand
theBPRwassetat130bar.Themodulationtimewas0.8min.The
seconddimensionwasrunat 3.0mL/min.Gradientelutionwas
appliedforallexperiments.Themobilephaseusedinthesecond
dimensionconsistedofCO2(A)andacetonitrile(B).Thegradient
wassettostartfrom3%(vol.)ofBto30%(vol.)ofBin0.5min;30%
(vol.)ofBto3%(vol.)ofBin0.01minandthenholdat3%Bfor
0.29min.ForthefirstdimensionRPLCseparation,anAgilent
Zor-baxEclipsePlusC18column(2.1*100mm,1.8m)wasused.The
columntemperaturewassetto50◦C.Themobilephaseconsisted
ofH2O(A)andacetonitrile(B)andthegradientwassettostarting
from10%(vol.)ofBto70%(vol.)ofBin45min.Theflowratewas
setat0.05mL/minandtheinjectionvolumewas5L
2.7 RPLC×SFCofligninsampleusingtrappingcolumns
AnAgilentZorbaxEclipsePlusC18(2.1*100mm,1.8m)was
usedinthefirstdimension.Thecolumntemperaturewas50◦C
ThemobilephaseconsistedofH2O(A)andacetonitrile(B)andthe
gradientwassettostartingfrom10%(vol.)ofBto90%(vol.)ofB
in60min.Theflowratewassetat0.05mL/minandtheinjection volumewas5L
AWatersUPC2TorusDiol(3.0*50mm,1.7m)columnwasused
intheseconddimensionSFCseparation.Thecolumntemperature wassetat55◦CandtheBPRat130bar.Theseconddimensionwas runat3.0mL/min,themobilephase consistedofCO2 (A)and a mixtureofmethanol(25vol.%)andacetonitrile(75vol.%)(B)and thegradientwassettostartfrom7%(vol.)ofBto32%(vol.)ofB
in0.49min;32%(vol.)ofBto2%(vol.)ofBin0.01min,thenhold
at2%for0.20minandincreasesfrom2%(vol.)ofBto7%(vol.)of
Bin0.1min.Thesecond-dimensiongradientstartedalreadyinthe previousmodulation,inordertocompensateforthecomparatively largegradientdelayvolumeofthesystem.TwoAgilentEclipsePlus phenyl-hexyl,2.1*5mm,1.8mtrappingcolumnswereusedinthe interfaceandthemodulationtimewas0.8min
2.8 RPLC×SFCofligninsampleusingcollectionloops ThesameAgilentZorbaxEclipsePlusC18(2.1*100mm,1.8m) wasusedinthefirstdimension.Thecolumntemperaturewas50◦C ThemobilephaseconsistedofH2O(A)andacetonitrile(B)andthe gradientwassettostartingfrom10%(vol.)ofBto90%(vol.)ofB
in60minandmaintain90%(vol.)ofBforanother20min.Theflow ratewassetat0.012mL/min
Trang 5Section2.7.Twoshortcapillariesof10Lwereusedintheinterface
andthemodulationtimewas0.8min
2.9 Chromatographiccalculations
Experimentalpeakcapacitiesforbothdimensionswere
calcu-latedbasedon:
jn=tn−t1
jrepresentsthenumberofthedimension(1or2).tn andt1 are
theretentiontimesofthelastandfirstpeakrespectively,wisthe
average4peakwidth
Conditional2Dpeakcapacitywascalculatedaccordingto[27]:
nco=ˇ×f×1n×2n (2)
ˇistheundersamplingfactor,whichwascalculatedfrom[27]:
ˇ= 1
1+0.21t
m⁄1
tmisthemodulationtime.1isthetimevarianceofthefirst
dimen-sionpeak
Thecoveragefactor fwascalculated usingtheratiobetween
occupied retention space and theoretically available retention
space,whichhasbeenintroducedindetailinreference[27]
3 Results and discussion
SFChasbeenappliedinourpreviousworktothetargeted
analy-sisoflignin-derivedphenoliccompounds[28].Asthecomplexityof
depolymerisedligninsamplesisfarbeyondtheresolvingpowerof
anyone-dimensionaltechnique,acomprehensive2D
chromatog-raphysystemisneededinordertoseparatethemajorcomponents
insuchcomplexsamplesfornon-target profilingpurposes.The
highefficiencyandspeedofSFCmakesitsuitabletobeplacedin
theseconddimension.Inaddition,ahighdegreeoforthogonality
mayalsobegeneratedbya2DRPLC×SFCdesign.Theuseof
trap-pingcolumnsintheinterfacecanpotentiallyretainandtransferthe
analytewithoutintroducingexcessiveamountoffirstdimension
mobilephaseintotheseconddimensionseparation
3.1 Trappingcolumncapacity
In general, compounds are presented as bands of different
lengthsaftertheyarepartiallyorcompletelytrappedinashort
column.Thelengthofthebandlargelydependsonthewidthofthe
compoundpeakinthefirstdimension,theelutionstrengthofthe
firstdimensioneluentandthespecificinteractionsbetweenthe
compoundandthetrappingstationaryphase[29]
Thethreetrappingcolumnsinvestigatedherehavesimilar
inter-nalvolume(∼10L),butwillinteractwithlignin-derivedphenols
differently.TheC18trappingcolumnretainsphenoliccompounds
mainlybydispersionforce.Theretentionofthephenyl-hexyl
trap-ping column is a mixtureof hydrophobic interactionand -
interactionofthebenzenerings.TheDIOLtrappingcolumnoffers
hydrogenbondinganddipole-dipoleinteractionwiththephenolic
compounds.Anotherimportantfactorthatdeterminesthe
reten-tionofthecompoundsistheelutionstrengthandtransfervolume
ofthe1stdimensioneluentafteracompoundistransferredinto
thetrappingcolumnuntilthevalveswitches.Thethreephenolic
compoundsselectedforassessingthetrappingcapacityrepresents
three categoriesof lignin-derivedphenols thatare prevalentin
depolymerisedligninsamples:phenolicacids(4-hydroxybenzoic
acid),phenolicketones(acetosyringone)andphenolicaldehydes
Fig 3.Trapping capacity of trapping column interface for representative lignin-derived phenolic compounds.
(veratraldehyde),whichwerewellspreadinthefirstdimension chromatogramwithagradientelution
Ingeneral,allthreetrappingcolumnsshowedonlylimited trap-pingcapacityforthethreecompounds,whichcanbeattributedto thesmallvolumesofthecolumns.However,thethreetrapping columnsshowedquitedifferentretainingbehavior ofthethree phenoltypes.Fig.3showstheretentionofthecompoundswhen thefirstdimensionflowratewassetat0.05mL/min.Underthisfirst dimensionconditions,4-hydroxybenzoicacid,acetosyringoneand veratraldehydeelutedatapproximately24%,34%and43%(vol.)of
Trang 6veratraldehydetrapped in theshort C18 trappingcolumn kept
increasinguptoacollectiontimeof0.8minand1.0min
respec-tively However, 4-hydroxybenzoic acid appeared to be poorly
retainedbytheC18column,significantbreakthroughoccurredat
collectiontimes>0.6min.Thiscanbeattributedtothefactthat
4-hydroxybenzoicacidlacksinalkylmoietiesthatcaninteractwith
C18stronglyandasignificantpartofthe4-hydroxybenzoicacid
molecules(pKa=4.54)wereinanionicformandpreferredstrongly
tostayinthemobilephase
Compared with the other two trapping columns, the DIOL
columnshowedapparentlyalowerretentionofveratraldehyde
Fig.3(c) showedthat apparentbreakthrough of veratraldehyde
startedtooccur(0.8min)shortlyaftermostofitwastrappedin
thecolumn(∼0.6min).Veratraldehydeelutedatthelowestwater
contentofthe1stdimensioneluentcomparedwiththeothertwo
compoundstested.AswaterhasgoodH-bondingandisregarded
asastrongsolventwithaDIOLcolumn,thelowretentionof
ver-atraldehydecan only beexplained bythe absence of hydroxyl
or carboxyl groups in the veratraldehyde molecular structure,
whichmakesitlessfavoredtoberetainedbytheDIOL
station-aryphase, compared with4-hydroxybenzoic acid( COOH) and
acetosyringone( OH)
The phenyl-hexyl column exhibited good trapping capacity
ofallthreecompoundswithveratraldehydebeingslightlymore
retainedthantheothertwo(Fig.3(a)).Thisindicatedthatthe-
interactionofthebenzeneringscombinedwiththehydrophobic
interactionswiththehexylchaincaneffectively retainphenolic
compoundsregardlessoftheirdifferencesinsubstitutedfunctional
groups.Thetrappingcapacityofthecompoundslargelydependson
theaccessibilityofthebenzenering,thenumberofalkylmoieties
andthenumberofdoublebondsonsubstituents.4-hydroxybenzoic
acidelutedin 1st dimensionC18column atcomparatively low
percentofACNowningtothetwopolarsubstituentsonthe
ben-zenering.ItsretentionintheEC-PHtrapcanbeattributedtothe
higheraccessibilityofthebenzeneringcomparedwiththeother
twocompoundswithmorethantwosubstitutiongroups.For
ace-tosyringoneandveratraldehydethatelutedin1stdimensioneluent
withrelatively higherelutionstrength,theirretentioncouldbe
fromthecombinationaleffectof-interactionwiththebenzene
ringsandhydrophobicinteractionswiththehexylchain.Itwasalso
foundoutthattheretentiontimeof4-hydroxybenzoicacidinthe
seconddimensionSFCwithEC-PHtrappingcolumnisslightlylower
thanwiththeothertwotrappingcolumns.Thiscanberegardedas
beneficialforperformingonlineRPLC×SFCoflignin-derive
com-pounds,asthelengthofthemodulationtimeislargelydecidedby
theelutionofthemostretainedphenolicacidsincertain
modula-tions.Thus,theEC-PHtrappingcolumnwasselectedforfurther2D
methoddevelopment
ligninmatrixwhenthecollectiontimeexceeded1.0min.Thistrend
isespeciallyapparentfor4-hydroxybenzoicacid,whichis com-parativelytheleastretainedcompoundonthiscolumnamongthe threecompoundstested.Thiscanbecorrelated tothepresence
ofothercompoundsinthematrix competingwiththetargeted analytesonthelimited trapping sites,causing faster and more significantbreakthroughatlongercollectiontimes
Asisshown inFig.S2,thematrixalsohad aslightnegative impactonthetrappingofcompoundspresentatdifferent concen-trations,resultinginarelativelyhigherstandarddeviationforthe 2nddimensionpeakareasofthetrappedcompoundscompared withthestandardmixture.Whenpeakareasareplottedagainst compoundconcentration,thelinearrelationshipisslightlybetter withthestandardmixturepointsforallthreecompoundsincluded
inthestudy
Apossiblewaytoimprovethetrappingcapacitycanbeactive modulation[23],whichinvolvesmixingofthefirstdimension elu-entandaflowofweaksolventbeforethetrappingcolumninterface
todecreasetheeluentstrengthandincreasethetrappingcapacity Oneofthemajorconcernswhenusingtrappingcolumnassisted modulationisrepeatability.AscanbeseenfromTable1,the reten-tiontimesof4-hydroxybenzoicacidandacetosyringoneexhibited comparable RSD values (within-day and between-day) in both dimensions.TheretentiontimeRSDvaluesofveratraldehydein theseconddimensionwerehigherthanthoseinthefirst dimen-sion.Thisislikelyexplainedbytheearlyelutionofveratraldehyde
intheseconddimension(k<1).However,theRSDvaluesarestillin theacceptablerange.TheseconddimensionpeakareaRSDvalues
of4-hydroxybenzoicacidwerehigherthanthoseoftheothertwo compounds.Thiscanbetheconsequenceofthelimitedtrapping capacityof4-hydroxybenzoicacidontheEC-PHtrappingcolumn
Aslightshiftofthefirstdimensionpeakretentiontimecancause eitherincompletetrappingorbreakthroughoftheanalyte,which leadstoseconddimensionpeakareafluctuation
3.2 Theinfluenceoftransfereluentvolumeandwatercontenton theseconddimensionSFCseparation
Itisapparentthatlarger-volumetrappingcolumnscanprovide highertrappingcapacity,whichwouldbebeneficialinaRPLC×SFC interfaceset-up.However,alargetransfervolumecanhave detri-mentaleffectsontheseconddimensionSFCseparationatthesame time,sincealargevolumeoftransferredorganic-richeluentcan leadtodistortedearlyelutingpeaksintheSFC.Furthermore,the transferoflargevolumesofwater-richeluenthasbeenprovento causesignificantSFC pressureincreaseand accumulationatthe beginningofthemodulations[21]
Trang 7Fig 4. Influence of injection volume and water content on SFC performance.
a) veratraldehyde in ACN:H 2 O 1:9, different injection volumes; b) veratraldehyde in ACN:H 2 O 1:1, different injection volumes; c) veratraldehyde in ACN:H 2 O 9:1, different injection volumes; d) veratraldehyde in different ACN:H 2 O mixture, 5 L injection; e) pump pressure curves of different injections See experimental section for specific chromatographic conditions.
Inordertoinvestigatetheinfluenceofinjectionvolumeand
watercontentonSFCseparationperformance,differentvolumes
of veratraldehydein samplediluents ofhigh, medium and low
amountofwaterwereinjected.Veratraldehydewaschosenasit
elutesearlyinallfourSFCcolumnsscreenedinthisstudyandis
morepronetopeakdistortioncausedbythesamplediluent[30]
AscanbeseeninFig.4,injectionscontainingrelativelyhighamount
ofwaterleadtogoodpeakshapeupto10L(Fig.4a).However,the
peakshapestartedtodeteriorateat10Land5Lrespectivelyfor
injectionofmediumandlowpercentagesofwater(Fig.4 andc)
Anothergeneralobservationisthattheretentiontimeofthe
ana-lyteseemedtoincreasewithincreasinginjectionvolumebetween
1and5Lforallthreesamplediluents.Furthermore,forthesame
injectionvolume,increasingwatercontentinthesamplediluent
seemstoprolongtheanalytesretention.Interestingly,sample
dilu-entscontainingwaterhasbeenproventocausepeakdistortionfor
relativelylargeinjectionvolumesinSFC,whichhasbeenattributed
todemixingeffectofwaterwithmobilephase,strongsolventeffect
andviscousfingering[30].Aplausibleexplanationforthegood
peakshapewithlargevolumeofhighwatercompositionsample
injectionsinthisstudycouldbethatforthisshortcolumnwith
relativelyhighmobilephaseflowrate,thewatercontaining
injec-tionsolventplugtravelsthroughthecolumninaveryshorttime,
sothattheextentofdemixingofwaterinthemobilephaseand
viscousfingeringisminimal.Anotherveryimportantfactorthat
hastobeconsideredfor2DRPLC×SFCapplicationisthepressure
increasecausedbylargevolumeinjectionofawatercontaining
solution.Fig.4 showsthatimmediatelyaftertheinjection,a
pres-sureincreaseoccursbeforethenormalpressurerampcausedbythe
gradient(redcircle).Andthemorewatertheinjectionsolvent
con-tains,thehigherthepressureincreaseis.Moreover,Fig.4 shows
thatwiththesameinjectionvolume,retentionisdecreasedwith
lesswaterinjected.Ourhypothesisonthesefindingsisthata
tem-porarywaterlayerisformedonthediolstationaryphaseatthe
frontendofthecolumnafterthesampleplugreachestheinletof
thecolumn.Thethicknessofthewaterlayerisdeterminedbythe
amountofwaterinjected.Thissuggestedwaterlayercould
perti-nentlyincreasetheretentionpowerofthestationaryphasewhich mightbeoneofthereasonswhyretentionincreaseswithincreasing injectionvolumeforthesamesamplediluentandwith increas-ingwatercontentinsamplediluentofthesameinjectionvolume Also,themobilephasechannelsinthecolumnarenarrowedby thewaterlayer,whichcausesapressurespikerightafterinjection Thesystempressuredifferenceamongdifferentinjectionsmight
beanothercauseofdifferentretentiontimesobserved, consider-ingthecompressibilityofsupercriticalCO2.Althoughitisnotthe focusofthisstudy,theeffectofwaterassamplediluentonSFC certainlydeservesathoroughandsystematicinvestigationinthe future
Basedontheseresults,trappingcolumnswithlargervolume than 10Lare not favored in the 2D RPLC×SFC system,even thoughitmayofferhighertrappingcapacities.Also,theusageof theselectedtrappingcolumninthisstudyrequiresthatthefirst dimensionLCseparationshouldbecontrolledinawaythatmost
oftheanalytesareelutedbeforethegradientreachesveryhigh organicsolventpercentage.Furthermore,thegradientinthefirst dimensionshouldbesetasgradualaspossibletoavoidmismatch
ofretentiontimesofdifferentfractionsofthesamepeak
3.3 FirstdimensionRPLCpeakcapacitystudy
Theinfluencesofflowrateandgradienttime/voidtime(tg/t0)
on the first dimension RPLC peak capacity were investigated
As can be seen in Fig 5(a), the first dimension peak capacity showsaseeminglypositivelogarithmicrelationshipwiththeratio betweengradienttimeandvoidtime,whentheflowratewaskept unchangedatarelativelylowvalue.Thisindicatedthatwhenthe firstdimensionisonlyrunningatarelativelylowflowrate,the increase of gradienttime is unnecessaryfor elevatingthepeak capacityafteracertainpointasonlylimitedincreaseofpeak capac-itycanbeachievedwithmuchlengthenedanalysistime.Although thefirstdimensionLCstill hastoberunatlowflow rates con-sideringthelimitedtrappingcapacityofthetrappingcolumn,the importanceofincreasingtheflowrateasmuchaspossibleis
Trang 8Althoughhigherflowratescanleadtohigherfirstdimension
peak capacity, this impact canbe graduallyevened outby the
increasingundersamplingeffect.Thisisbecausethefirst
dimen-sionpeakswillbecomenarrowerwithhigherflowrates,butthe
modulationtimehastobelongenoughtomakesureallthe
com-poundstransferredinonemodulationareelutedbeforethenext
modulation.Takingthisandthetrappingcolumnretention
capac-ityintoconsideration,0.05mL/minwasfinallyselectedasthefirst
dimensionflowrateandthefirstdimensionLCmethodwasthen
improvedaccordingly
3.4 Seconddimensioncolumnscreeningand2Dmethod
development
Preliminaryexperiments(datanotshown)revealedthat
phe-noliccompoundsindepolymerisedligninsamplesshowedawide
varietyofretentionbehavior inSFCanalysisdue totheir
struc-turalcomplexity.Inordertoachievecompleteelutionofanalytes
ineverymodulationandtakingintoconsiderationtheresultsofthe
trappingcolumntest,0.8minwaschosenasthemodulationtime
LCseparationinthefirstdimension,-andH-bonding interac-tionintheseconddimensionSFCcanbothprovidehighdegreesof orthogonality.ThecomparativelylowercoveragefactoroftheBEH columncouldberelatedtotheethylenebridgedhybridparticle whichdecreasestheH-bondingcapabilityofthesilicastationary phase.However,oneadvantageoftheBEHcolumnisthatithad thelowest pressure spikeat thebeginning of each modulation (20barcomparedwith30to40barfortheotherthreecolumns) Thisobservationcouldalsoberelatedtothehypothesisofwater layerformationonthestationaryphase.Asethylene-bridgedsilica
isfarlessacidicthannormalsilica,theweakenedhydrogenbonds betweenthestationaryphaseandH2Ocanreducethethickness
ofthewaterlayer.Thehighlyorthogonalseparationdemonstrated
bythecombinationofRPLCandSFCindicatedthathydrophobic interactionwhichdetermines theelutionof thefirst dimension RPLCplaysaweakroleindecidingthecompoundelutionofthe seconddimensionSFC.TheDIOLcolumnwaspickedforfurther experimentsasitprovidedrelativelybetterseparationoftheearly elutingpeaksfromthefirstdimension,mediumpressurespikeand
Fig 6.RPLC × SFC second dimension column screening Sample: 40 lignin phenolic compound standard mixture Chromatographic conditions can be found in the Experimental
Trang 9Fig 7. 2D separation of a lignin depolymerised sample with the final RPLC × SFC methods with interface using A: two trapping columns; B: two collection loops Chro-matographic conditions can be found in the Experimental section See Table S1 for peak identities Due to the software limitation of the home-built instrument, only limited number of modulations could be programmed and performed for one analysis Consequently, 2D analysis was only applied with the maximum number of modulation allowed
by the software during the periods of time when most compounds eluted in both A and B, including the same fractions of peaks eluting from the 1st dimension column.
comparativelybetterseconddimensionpeakshapeandlessnoisy
background
Fortheimprovementofthe2Dseparation,differentco-solvents,
columntemperatures,backpressuresandgradientsweretested
for thesecond dimensionSFC Additionally,the second
dimen-siongradientwastunedsothatitstartedalreadyintheprevious
modulation,inordertocompensateforthecomparativelylarge
gradientdelayvolumeofthesystem.ThefinalRPLC×SFCmethod
wasthenappliedfortheseparationofalignindepolymerised
sam-ple(Fig.7A)
3.5 ComparisonoftrappingcolumnsandloopsintheRPLC×SFC
system
Forthecomparisonofusingtrappingcolumnsandcollection
loopsasinterfaceintheRPLC×SFCsystem,thedevelopedmethod
wasmodifiedbyreplacingtrappingcolumnswithloopsof
simi-larvolume(∼10L).Eventhoughthemodulationtimewaskept
thesame,thefirstdimensionLCflowratehadtobesignificantly
decreased(4times)consideringtheamountofeluenttransferred
intotheseconddimension
Thecomparison of2Dchromatogramsgenerated fromusing
collectionloopsandtrappingcolumnscanbevisualizedinFig.7
Ingeneral,thecombinationofRPLCandSFCshowshighdegree
oforthogonality Thecoverage factor wascalculatedto be0.79
and0.77fortrappingcolumninterfaceandloopinterface
respec-tively.Theusageoftrappingcolumnintheinterfacereducedthe
totalanalysistimeby2times,ascomparedtointerfacewithloops
Fourcompoundscouldbedetectedandtentativelyidentifiedboth
withthetrappingcolumninterfaceandcollectionloopinterface
basedontheseparationofthemixtureofthe40standards
How-ever,vanillicacid(peak11)canonlybedetectedwiththeusage
oftrappingcolumnsintheinterface.Thisdemonstratedanother
advantageofusingtrappingcolumns:someanalytesofrelatively
lowconcentrationcanbedetectedastheyareconcentratedinthe
trappingcolumnbeforetransferredintotheseconddimension.This
isnotpossiblewithtraditionalloopinterfaces.However,thetotal
conditionalpeakcapacityobtainedwithtrappingcolumnis277,
whichislowerthanthatwithloops(340).Thisiscausedbymore
severeundersampling(ˇ=0.26fortrappingcolumn;ˇ=0.57for
loops)whentrappingcolumnisusedasinterface.Whatisalso
wor-thytobepointedoutisthateventhoughnowrap-aroundpeaks
wereobservedduringthe2nddimensionoptimizationwiththe
standardmixture,asthevarietyofcompoundsinthereal
depoly-merisedligninsampleisverywide,afewpeakselutedattheendof
oraftertheendofonemodulation.Ifthesewrap-aroundsaretobe eliminated,thegradienthastoendwithahighpercentofco-solvent
oranextrahold-uptimeatarelativelyhighpercentofco-solvent hastobeadded.Eitherway,the2nddimensionseparationorthe trappingofthecompoundswouldhavetobesignificantly compro-mised.Therefore,inthisstudythe2nddimensiongradientwasset
inawaythatthenumberofwrap-aroundpeakswerereducedto minimumandtheremainingwrap-aroundpeaksallelutedvery earlyinthenextmodulationbeforethesolventpeakwithout over-lappingwiththepeaksinthefollowingmodulationperiod
Inourpreviousresearchwehavedevelopedanultra-high per-formancesupercriticalfluidchromatographymethod(UHPSFC)for theanalysisoflignin-derivedphenoliccompounds[31].Thesame depolymerisedligninsampleinthisstudywasalsoanalysedusing theUHPSFCmethod(seechromatograminFig.S1).In compari-son,theRPLC×SFCmethoddevelopedhadamorethanthreetimes higherpeakcapacitythantheUHPSFCmethod(277forRPLC×SFC and81forUHPSFC).ThedisadvantageoftheRPLC×SFCmethodis thelongeranalysistime,whichwas6timeslongerthanthatofthe UHPSFCmethod.Inordertoshortenthe2Danalysistimewithout
asacrificeofthepeakcapacity,futureworkshouldfocuson devel-opingmoreeffectiveinterfacesamplefocusingtechniquestoallow higherflowratetobeusedinthefirstdimensionandachievefaster SFCseparationtoremedytheundersamplingissue
4 Conclusion
A novel comprehensive online two-dimensional RPLC×SFC methodwasdevelopedfortheanalysisofdepolymerisedlignin sampleswithtrappingcolumnassistedmodulation.APhenyl-hexyl trappingcolumnwaspickedbasedonatrappingcapacity eval-uationof3differenttrappingcolumns.AlthoughtheRSDvalues werewithinacceptableranges,therepeatabilityofthetrapping columnassistedRPLC×SFCsystemwasshowntobeundermined
bythelimitedtrappingcapacity.Activemodulationoramore thor-oughsearchforcolumnsspecificallydesignedfortheretentionof smallphenoliccompoundscouldpotentiallyimprovethesystem
Nodemixingeffectswereobservedwheninjectinglargevolumes
ofwatercontainingsamplesinSFCwhenusingahighflowrate anda shortcolumn,possiblyduetofasttravelofintactsample diluentplugthroughthecolumn.Waterassamplediluentturned outtoenablegoodpeakshapes,evenataslargeinjectionvolumes
as10L.WhenthefirstdimensionLCflowiskeptrelativelylow (e.g.≤0.05mL/mininthisstudy),anincreaseinthefirst dimen-sionflow ratecanraise thefirstdimensionpeak capacitymore
Trang 10Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,atdoi:10.1016/j.chroma.2018.02.008
References
[1] P Gallezot, Conversion of biomass to selected chemical products, Chem Soc.
Rev 41 (2012) 1538–1558.
[2] O.Y Abdelaziz, D.P Brink, J Prothmann, K Ravi, M.Z Sun, J Garcia-Hidalgo, M.
Sandahl, C.P Hulteberg, C Turner, G Liden, M.F Gorwa-Grauslund, Biological
valorization of low molecular weight lignin, Biotechnol Adv 34 (2016)
1318–1346.
[3] M.P Pandey, C.S Kim, Lignin depolymerization and conversion: a review of
thermochemical methods, Chem Eng Technol 34 (2011) 29–41.
[4] J.S Lupoi, S Singh, R Parthasarathi, B.A Simmons, R.J Henry, Recent
innovations in analytical methods for the qualitative and quantitative
assessment of lignin, Renew Sust Energ Rev 49 (2015) 871–906.
[5] X.P Ouyang, Z.L Chen, X.Q Qiu, Determination of monophenolic compounds
from lignin oxidative degradation using ultra performance liquid
chromatography/high resolution mass spectrometry, Chin J Anal Chem 42
(2014) 723–728.
[6] T.M Jarrell, C.L Marcum, H.M Sheng, B.C Owen, C.J O’Lenick, H Maraun, J.J.
Bozell, H.I Kenttamaa, Characterization of organosolv switchgrass lignin by
using high performance liquid chromatography/high resolution tandem mass
spectrometry using hydroxide-doped negative-ion mode electrospray
ionization, Green Chem 16 (2014) 2713–2727.
[7] T Michailof, S Sfetsas, K Stefanidis, G Kalogiannis, A Theodoridis,
Quantitative and qualitative analysis of hemicellulose, cellulose and lignin
bio-oils by comprehensive two-dimensional gas chromatography with
time-of-flight mass spectrometry, J Chromatogr A 1369 (2014) 147–160.
[8] M Windt, D Meier, J.H Marsman, H.J Heeres, S de Koning, Micro-pyrolysis of
technical lignins in a new modular rig and product analysis by GC–MS/FID
and GC x GC-TOFMS/FID, J Anal Appl Pyrol 85 (2009) 38–46.
[9] A Le Masle, D Angot, C Gouin, A D’Attoma, J Ponthus, A Quignard, S.
Heinisch, Development of on-line comprehensive two-dimensional liquid
chromatography method for the separation of biomass compounds, J.
Chromatogr A 1340 (2014) 90–98.
[10] M Gilar, P Olivova, A.E Daly, J.C Gebler, Orthogonality of separation in
two-dimensional liquid chromatography, Anal Chem 77 (2005) 6426–6434.
[11] I Francois, K Sandra, P Sandra, Comprehensive liquid chromatography:
fundamental aspects and practical considerations-a review, Anal Chim Acta.
641 (2009) 14–31.
(2010) 1504–1512.
[20] C.J Venkatramani, M Al-Sayah, G.N Li, M Goel, J Girotti, L.S Zang, L Wigman, P Yehl, N Chetwyn, Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography, Talanta 148 (2016) 548–555.
[21] M Sarrut, A Corgier, G Cretier, A Le Masle, S Dubant, S Heinisch, Potential and limitations of on-line comprehensive reversed phase liquid
chromatography x supercritical fluid chromatography for the separation of neutral compounds: an approach to separate an aqueous extract of bio-oil, J Chromatogr A 2015 (1402) 124–133.
[22] L.A Gao, J Zhang, W.B Zhang, Y.C Shan, Z Liang, L.H Zhang, Y.S Huo, Y.K Zhang, Integration of normal phase liquid chromatography with supercritical fluid chromatography for analysis of fruiting bodies of Ganoderma lucidum, J Sep Sci 33 (2010) 3817–3821.
[23] A.F.G Gargano, M Duffin, P Navarro, P.J Schoenmakers, Reducing dilution and analysis time in online comprehensive two-dimensional liquid chromatography by active modulation, Anal Chem 88 (2016) 1785–1793 [24] M Verstraeten, M Pursch, P Eckerle, J Luong, G Desmet, Thermal modulation for multidimensional liquid chromatography separations using low-thermal-mass liquid chromatography (LC), Anal Chem 83 (2011) 7053–7060.
[25] B.W.J Pirok, A.F.G Gargano, P.J Schoenmakers, Optimizing separations in online comprehensive two-dimensional liquid chromatography, J Sep Sci 41 (2018) 68–98.
[26] P Cesla, J Krenkova, Fraction transfer process in on-line comprehensive two-dimensional liquid-phase separations, J Sep Sci 40 (2017) 109–123 [27] D.R Stoll, X.L Wang, P.W Carr, Comparison of the practical resolving power
of one- and two-dimensional high-performance liquid chromatography analysis of metabolomic samples, Anal Chem 80 (2008) 268–278.
[28] M Sun, G Liden, M Sandahl, C Turner, Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation, J Sep Sci 39 (2016) 3123–3129.
[29] J De Vos, S Eeltink, G Desmet, Peak refocusing using subsequent retentive trapping and strong eluent remobilization in liquid chromatography: a theoretical optimization study, J Chromatogr A 1381 (2015) 74–86 [30] V Desfontaine, A Tarafder, J Hill, J Fairchild, A Grand-Guillaume Perrenoud, J.L Veuthey, D Guillarme, A systematic investigation of sample diluents in modern supercritical fluid chromatography, J Chromatogr A 2017 (1511) 122–131.
[31] J Prothmann, M Sun, P Spegel, M Sandahl, C Turner, Ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) for analysis of lignin-derived monomeric compounds in processed lignin samples, Anal Bioanal Chem 409 (2017) 7049–7061.